假设我有两个spark DataFrames:
val addStuffDf = Seq(
("A", "2018-03-22", 5),
("A", "2018-03-24", 1),
("B", "2018-03-24, 3))
.toDF("user", "dt", "count")
val removedStuffDf = Seq(
("C", "2018-03-25", 10),
("A", "2018-03-24", 5),
("B", "2018-03-25", 1)
).toDF("user", "dt", "count")
最后我想得到一个包含这样的摘要统计数据的单个数据帧(实际上排序无关紧要):
+----+----------+-----+-------+
|user| dt|added|removed|
+----+----------+-----+-------+
| A|2018-03-22| 5| 0|
| A|2018-03-24| 1| 5|
| B|2018-03-24| 3| 0|
| B|2018-03-25| 0| 1|
| C|2018-03-25| 0| 10|
+----+----------+-----+-------+
很明显,我可以简单地在“步骤0”重命名“计数”列,以便拥有数据帧df1
和df2
val df1 = addedDf.withColumnRenamed("count", "added")
df1.show()
+----+----------+-----+
|user| dt|added|
+----+----------+-----+
| A|2018-03-22| 5|
| A|2018-03-24| 1|
| B|2018-03-24| 3|
+----+----------+-----+
val df2 = removedDf.withColumnRenamed("count", "removed")
df2.show()
+----+----------+-------+
|user| dt|applied|
+----+----------+-------+
| C|2018-03-25| 10|
| A|2018-03-24| 5|
| B|2018-03-25| 1|
+----+----------+-------+
但是现在我没有定义“第1步” - 即确定将df1和df2压缩在一起的转换。
从逻辑角度来看full_outer
连接会在单个DF中引入我需要的所有行,但是我需要以某种方式合并重复列:
df1.as('d1)
.join(df2.as('d2),
($"d1.user"===$"d2.user" && $"d1.dt"===$"d2.dt"),
"full_outer")
.show()
+----+----------+-----+----+----------+-------+
|user| dt|added|user| dt|applied|
+----+----------+-----+----+----------+-------+
|null| null| null| C|2018-03-25| 10|
|null| null| null| B|2018-03-25| 1|
| B|2018-03-24| 3|null| null| null|
| A|2018-03-22| 5|null| null| null|
| A|2018-03-24| 1| A|2018-03-24| 5|
+----+----------+-----+----+----------+-------+
如何将这些user
和dt
列合并在一起?而且,总的来说 - 我使用正确的方法来解决我的问题还是有一个更简单/有效的解决方案?
答案 0 :(得分:2)
由于要为两个DataFrame连接的列具有匹配的名称,因此使用Seq("user", "dt")
作为连接条件将导致所需的合并表:
val addStuffDf = Seq(
("A", "2018-03-22", 5),
("A", "2018-03-24", 1),
("B", "2018-03-24", 3)
).toDF("user", "dt", "count")
val removedStuffDf = Seq(
("C", "2018-03-25", 10),
("A", "2018-03-24", 5),
("B", "2018-03-25", 1)
).toDF("user", "dt", "count")
val df1 = addStuffDf.withColumnRenamed("count", "added")
val df2 = removedStuffDf.withColumnRenamed("count", "removed")
df1.as('d1).join(df2.as('d2), Seq("user", "dt"), "full_outer").
na.fill(0).
show
// +----+----------+-----+-------+
// |user| dt|added|removed|
// +----+----------+-----+-------+
// | C|2018-03-25| 0| 10|
// | B|2018-03-25| 0| 1|
// | B|2018-03-24| 3| 0|
// | A|2018-03-22| 5| 0|
// | A|2018-03-24| 1| 5|
// +----+----------+-----+-------+