我使用数据框的一个子集成功完成了这项工作,但我似乎无法使用其他子集。有大约4000个订单的信息,范围为0 - 8个月,情绪为0-5。
目标是使用'order'和'month.of.service'的id来融合数据,并汇总该月的平均情绪。数据框如下所示:
order | month | sentiment
123 | 0 | 3
123 | 0 | 4
123 | 1 | 3
124 | 0 | 2
我希望它看起来像这样:
123 | 0 | 3.5
123 | 1 | 3
124 | 0 | 2
这是我用过的实际代码:
sentiment.md <- melt(sentiment, id = c('Related.order', 'Lifespan'))
sentiment.dc <- dcast(sentiment.md, Related.order + Lifespan ~ value, sum)
> head(sentiment.md)
Related.order Lifespan variable value
1 12771 0 Sentiment 5
2 11188 1 Sentiment 3
3 12236 3 Sentiment 5
4 12925 0 Sentiment 5
5 12151 3 Sentiment 5
6 12338 0 Sentiment 5
> head(sentiment.dc)
Related.order Lifespan 0 1 2 3 4 5
1 4976 0 NaN NaN NaN 3 NaN NaN
2 4976 1 NaN NaN NaN 3 NaN NaN
3 4976 2 NaN NaN NaN NaN 4 NaN
4 4976 3 NaN NaN NaN NaN 4 NaN
5 4976 4 NaN NaN NaN NaN 4 NaN
6 4976 5 NaN NaN NaN NaN 4 NaN
为了演示我希望它看起来更像是什么,这里使用数据框中唯一的其他列以我想要的格式完成相同的事情,交互:
interactions.md <- melt(interactions, id = c('Related.order', 'Lifespan'))
interactions.dc <- dcast(interactions.md, Related.order + Lifespan ~ value, sum)
> head(interactions.md)
Related.order Lifespan variable value
1 12771 0 Event 1
2 11188 1 Event 1
3 12236 3 Event 1
4 12925 0 Event 1
5 12151 3 Event 1
6 12338 0 Event 1
> head(interactions.dc)
Related.order Lifespan 1
1 4976 0 6
2 4976 1 3
3 4976 2 3
4 4976 3 1
5 4976 4 2
6 4976 5 2
我想也许我正在使用错误的结构或其他东西,但却无法识别任何东西。作为参考,这里是R-studio的截图:
答案 0 :(得分:4)
也许您想要进行某种聚合/折叠,而不是dcast
?
library(data.table);
setDT(df)[, .(sentiment = mean(sentiment)), by = .(order, month)]
# order month V1
#1: 123 0 3.5
#2: 123 1 3.0
#3: 124 0 2.0
如果您确实希望使用dcast
,可以尝试:
dcast(df, order + month ~ ., mean, value.var = "sentiment")
或dplyr
:
df %>% group_by(order, month) %>% summarise(sentiment = mean(sentiment))
这些只是R中聚合的众多例子中的一部分。
数据:
df <- structure(list(order = c(123L, 123L, 123L, 124L), month = c(0L,
0L, 1L, 0L), sentiment = c(3L, 4L, 3L, 2L)), .Names = c("order",
"month", "sentiment"), row.names = c(NA, -4L), class = "data.frame")
答案 1 :(得分:2)
使用基数R,使用aggregate
。
aggregate(sentiment ~ month + order, sentiment, mean, na.rm = TRUE)[c(2, 1, 3)]
# order month sentiment
#1 123 0 3.5
#2 123 1 3.0
#3 124 0 2.0
DATA。
sentiment <- read.table(text = "
order | month | sentiment
123 | 0 | 3
123 | 0 | 4
123 | 1 | 3
124 | 0 | 2
", header = TRUE, sep = "|")