插入符号中的varImp“生成”数千个变量

时间:2018-03-28 16:44:45

标签: r r-caret

我有一个如下模型:

model

Random Forest 

 56 samples
100 predictors
  2 classes: 'control', 't1d' 

No pre-processing
Resampling: Leave-One-Out Cross-Validation 
Summary of sample sizes: 55, 55, 55, 55, 55, 55, ... 
Resampling results across tuning parameters:

  mtry  ROC         Sens        Spec      
     2  0.08673469  0.10714286  0.28571429
   104  0.00000000  0.00000000  0.03571429
  5499  0.00000000  0.03571429  0.00000000

ROC was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.

它表明我只有100个预测变量。但是,当我运行varImp时,这是输出。

rf variable importance

  only 20 most important variables shown (out of 5500)

                 Overall
v720.004520377    100.00
v950.0010273908    91.59
v830.0005474310    88.41
v760.00021678889   86.73
v30.011279394      85.48
v310.002027226     84.64
v600.0030823047    82.53
v70.02515785       82.40
v110.002849240     78.08
v740.004275572     75.37
v170.00045555545   74.44
v170.00042719287   73.48
v70.01859216       72.23
v190.01569173      70.90
v700.013340430     70.70
v330.02143915      70.46
v560.013864934     69.61
v340.014476069     69.32
v810.002786661     69.18
v100.008557477     67.65

小数点后的数字是什么意思?我的功能被命名为“v1”到“v100”。为什么这说我有5500个变量?

如果您有任何想法,为什么输出看起来像这样我会很感激。

由于

0 个答案:

没有答案