基于我在下面链接的相关问题(参见@Aleh解决方案):我希望在给定功率的矩阵中的列之间仅计算唯一的产品。
例如,对于N = 5,M = 3,p = 2,我们得到列(1,1),(1,2),(1,3),(2,1),(2)的乘积,2),(2,3),(3,1),(3,2),(3,3)。我想修改(@ Aleh' s)代码,仅计算列(1,1),(1,2),(1,3),(2,2),(2,3)之间的乘积,( 3,3)。但是我想为每个p阶段执行此操作。
有人可以帮我在R中完成这个吗?
非常感谢提前!
答案 0 :(得分:5)
我们创建以下函数,该函数采用所选的p
的所有“唯一”排列,并乘以矩阵的相关列:
fun <- function(mat,p) {
mat <- as.data.frame(mat)
combs <- do.call(expand.grid,rep(list(seq(ncol(mat))),p)) # all combinations including permutations of same values
combs <- combs[!apply(combs,1,is.unsorted),] # "unique" permutations only
rownames(combs) <- apply(combs,1,paste,collapse="-") # Just for display of output, we keep info of combinations in rownames
combs <- combs[order(rownames(combs)),] # sort to have desired column order on output
apply(combs,1,function(x) Reduce(`*`,mat[,x])) # multiply the relevant columns
}
<强>实施例强>
N = 5
M = 3
mat1 = matrix(1:(N*M),N,M)
# [,1] [,2] [,3]
# [1,] 1 6 11
# [2,] 2 7 12
# [3,] 3 8 13
# [4,] 4 9 14
# [5,] 5 10 15
M = 4
mat2 = matrix(1:(N*M),N,M)
# [,1] [,2] [,3] [,4]
# [1,] 1 6 11 16
# [2,] 2 7 12 17
# [3,] 3 8 13 18
# [4,] 4 9 14 19
# [5,] 5 10 15 20
lapply(2:4,fun,mat=mat1)
# [[1]]
# 1-1 1-2 1-3 2-2 2-3 3-3
# [1,] 1 6 11 36 66 121
# [2,] 4 14 24 49 84 144
# [3,] 9 24 39 64 104 169
# [4,] 16 36 56 81 126 196
# [5,] 25 50 75 100 150 225
#
# [[2]]
# 1-1-1 1-1-2 1-1-3 1-2-2 1-2-3 1-3-3 2-2-2 2-2-3 2-3-3 3-3-3
# [1,] 1 6 11 36 66 121 216 396 726 1331
# [2,] 8 28 48 98 168 288 343 588 1008 1728
# [3,] 27 72 117 192 312 507 512 832 1352 2197
# [4,] 64 144 224 324 504 784 729 1134 1764 2744
# [5,] 125 250 375 500 750 1125 1000 1500 2250 3375
#
# [[3]]
# 1-1-1-1 1-1-1-2 1-1-1-3 1-1-2-2 1-1-2-3 1-1-3-3 1-2-2-2 1-2-2-3 1-2-3-3 1-3-3-3 2-2-2-2 2-2-2-3 2-2-3-3 2-3-3-3 3-3-3-3
# [1,] 1 6 11 36 66 121 216 396 726 1331 1296 2376 4356 7986 14641
# [2,] 16 56 96 196 336 576 686 1176 2016 3456 2401 4116 7056 12096 20736
# [3,] 81 216 351 576 936 1521 1536 2496 4056 6591 4096 6656 10816 17576 28561
# [4,] 256 576 896 1296 2016 3136 2916 4536 7056 10976 6561 10206 15876 24696 38416
# [5,] 625 1250 1875 2500 3750 5625 5000 7500 11250 16875 10000 15000 22500 33750 50625
fun(mat2,2)
# 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4
# [1,] 1 6 11 16 36 66 96 121 176 256
# [2,] 4 14 24 34 49 84 119 144 204 289
# [3,] 9 24 39 54 64 104 144 169 234 324
# [4,] 16 36 56 76 81 126 171 196 266 361
# [5,] 25 50 75 100 100 150 200 225 300 400
答案 1 :(得分:3)
如果我理解正确,那么这就是你要找的:
# all combinations of p elements out of M with repetiton
# c.f. http://www.mathsisfun.com/combinatorics/combinations-permutations.html
comb_rep <- function(p, M) {
combn(M + p - 1, p) - 0:(p - 1)
}
# use cols from mat to form a new matrix
# take row products
col_prod <- function(cols, mat) {
apply(mat[ ,cols], 1, prod)
}
N <- 5
M <- 3
p <- 3
mat <- matrix(1:(N*M),N,M)
col_comb <- lapply(2:p, comb_rep, M)
col_comb
#> [[1]]
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 1 1 1 2 2 3
#> [2,] 1 2 3 2 3 3
#>
#> [[2]]
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 1 1 1 1 1 1 2 2 2 3
#> [2,] 1 1 1 2 2 3 2 2 3 3
#> [3,] 1 2 3 2 3 3 2 3 3 3
# prepend original matrix
res_mat <- list()
res_mat[[1]] <- mat
c(res_mat,
lapply(col_comb, function(cols) apply(cols, 2, col_prod, mat)))
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 1 6 11
#> [2,] 2 7 12
#> [3,] 3 8 13
#> [4,] 4 9 14
#> [5,] 5 10 15
#>
#> [[2]]
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 1 6 11 36 66 121
#> [2,] 4 14 24 49 84 144
#> [3,] 9 24 39 64 104 169
#> [4,] 16 36 56 81 126 196
#> [5,] 25 50 75 100 150 225
#>
#> [[3]]
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 1 6 11 36 66 121 216 396 726 1331
#> [2,] 8 28 48 98 168 288 343 588 1008 1728
#> [3,] 27 72 117 192 312 507 512 832 1352 2197
#> [4,] 64 144 224 324 504 784 729 1134 1764 2744
#> [5,] 125 250 375 500 750 1125 1000 1500 2250 3375
但是,它并不是真正有效的,因为例如从原始矩阵的三列而不是原始矩阵的一列和第二功率的一列计算第三功率。
编辑使用评论中提到的实际尺寸进行测试表明,@ Moody_Mudskipper的乘法方法更快 ,而我的组合方法是快一点因此将两者结合起来是有意义的:
# original function from @Moody_Mudskipper's answer
fun <- function(mat,p) {
mat <- as.data.frame(mat)
combs <- do.call(expand.grid,rep(list(seq(ncol(mat))),p)) # all combinations including permutations of same values
combs <- combs[!apply(combs,1,is.unsorted),] # "unique" permutations only
rownames(combs) <- apply(combs,1,paste,collapse="-") # Just for display of output, we keep info of combinations in rownames
combs <- combs[order(rownames(combs)),] # sort to have desired column order on output
apply(combs,1,function(x) Reduce(`*`,mat[,x])) # multiply the relevant columns
}
combined <- function(mat, p) {
mat <- as.data.frame(mat)
combs <- combn(ncol(mat) + p - 1, p) - 0:(p - 1) # all combinations with repetition
colnames(combs) <- apply(combs, 2, paste, collapse = "-") # Just for display of output, we keep info of combinations in colnames
apply(combs, 2, function(x) Reduce(`*`, mat[ ,x])) # multiply the relevant columns
}
N <- 10000
M <- 25
p <- 4
mat <- matrix(runif(N*M),N,M)
microbenchmark::microbenchmark(
fun(mat, p),
combined(mat, p),
times = 10
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> fun(mat, p) 3.456853 3.698680 4.067995 4.032647 4.341944 4.869527 10
#> combined(mat, p) 2.543994 2.738313 2.870446 2.793768 3.090498 3.254232 10
请注意,这两个函数不会为M > 9
产生相同的结果,因为由于1-10 < 1-2
中使用了fun
的词法排序,列排序不同。如果在combined
中插入相同的词法排序,结果将是相同的。