import sys
from flask import Flask, request, render_template, jsonify, make_response
#import pyexcel as pe
import csv
import cv2
app = Flask(__name__)
@app.route('/send', methods=['GET', 'POST'])
def send():
if request.method == 'POST':
postdata = request.form
file_name = postdata['filename']
print("file name: ====================== {}".format(file_name))
file = str(file_name)
path = ".\\static\\" + file
return render_template('/send.html')
if __name__ == "__main__":
app.run(debug=True)
app.run()
upload.py文件和我的send.html代码是
<html>
<form action = "/send" method = "POST">
<meta name="viewport" content="width=device-width, initial-scale=1">
</body>
<input id="uploadFile" placeholder="Choose File" disabled="disabled" />
<div class="fileUpload btn btn-primary">
<span>Upload</span>
<input id="uploadBtn" type="file" class="upload" />
</div>
<script>
document.getElementById("uploadBtn").onchange = function () {
document.getElementById("uploadFile").value = this.value;
var filename=(document.getElementById("uploadBtn").value)
document.write("You have chosen"+filename)
};
</script>
</form>
</html>
我的final.py
用于识别面孔并显示我训练过的人的姓名
import cv2
import os
import numpy as np
import glob
subjects = ["", "shah rukh", "Ram","Aishwarya","Kavya","Vaishnavi","Rajamouli","Nani","Mahesh Babu","Samantha"]
def detect_face(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier('D:/lbpcascade_frontalface.xml')
eye_cascade = cv2.CascadeClassifier('D:/haarcascade_eye.xml')
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5);
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
if (len(faces) == 0):
return None, None
(x, y, w, h) = faces[0]
return gray[y:y+w, x:x+h], faces[0]
def prepare_training_data(data_folder_path):
dirs = os.listdir(data_folder_path)
faces = []
labels = []
for dir_name in dirs:
if not dir_name.startswith("s"):
continue;
label = int(dir_name.replace("s", ""))
subject_dir_path = data_folder_path + "/" + dir_name
subject_images_names = os.listdir(subject_dir_path)
for image_name in subject_images_names:
if image_name.startswith("."):
continue;
image_path = subject_dir_path + "/" + image_name
image = cv2.imread(image_path)
cv2.imshow("Training on image...", cv2.resize(image, (400, 500)))
cv2.waitKey(100)
face, rect = detect_face(image)
if face is not None:
faces.append(face)
labels.append(label)
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()
return faces, labels
print("Preparing data...")
faces, labels = prepare_training_data("D://training-data/")
print("Data prepared")
print("Total faces: ", len(faces))
print("Total labels: ", len(labels))
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.train(faces, np.array(labels))
def draw_rectangle(img, rect):
(x, y, w, h) = rect
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
def draw_text(img, text, x, y):
cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)
def predict(test_img):
img = test_img.copy()
face, rect = detect_face(img)
label, confidence = face_recognizer.predict(face)
label_text = subjects[label]
draw_rectangle(img, rect)
draw_text(img, label_text, rect[0], rect[1]-5)
return img
print("Predicting images...")
img_path=glob.glob("D://test-data/*.jpg")
z=1
for i in img_path:
predicted_img1 = predict(cv2.imread(i))
cv2.imshow(subjects[z], cv2.resize(predicted_img1, (400, 500)))
z=z+1
print("Prediction complete")
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.waitKey(1)
cv2.destroyAllWindows()
我可以获取upload.py中使用的file_name并在final.py中使用它。当一个人选择一个文件(在这种情况下是一个图像)并点击上传按钮,然后我需要在我的final.py中训练的html中显示那个人的名字。
请帮帮我。谢谢。
答案 0 :(得分:1)
出于安全原因,您永远无法从用户获取系统路径。 浏览器不允许这样做。
您只能获取具有图像名称,高度,宽度等的Image对象。
所以你可以做的是
这是你完成这项工作的唯一方法。
检查一下:
@app.route('/home2', methods=['POST', 'GET'])
def home2():
if request.method == 'POST':
postdata = request.form
file_name = postdata['filename']
print("file name: ====================== {}".format(file_name))
file = str(file_name)
path = ".\\static\\" + file
确保表单中的html元素名称为&#34; filename&#34;