用python(NumPy)求解热方程

时间:2018-03-24 11:12:00

标签: python numpy numerical-methods

我解决了金属棒的热量方程,因为一端保持在100°C而另一端保持在0°C

enter image description here

import numpy as np
import matplotlib.pyplot as plt

dt = 0.0005
dy = 0.0005
k = 10**(-4)
y_max = 0.04
t_max = 1
T0 = 100

def FTCS(dt,dy,t_max,y_max,k,T0):
    s = k*dt/dy**2
    y = np.arange(0,y_max+dy,dy) 
    t = np.arange(0,t_max+dt,dt)
    r = len(t)
    c = len(y)
    T = np.zeros([r,c])
    T[:,0] = T0
    for n in range(0,r-1):
        for j in range(1,c-1):
            T[n+1,j] = T[n,j] + s*(T[n,j-1] - 2*T[n,j] + T[n,j+1]) 
    return y,T,r,s

y,T,r,s = FTCS(dt,dy,t_max,y_max,k,T0)

plot_times = np.arange(0.01,1.0,0.01)
for t in plot_times:
    plt.plot(y,T[t/dt,:])

如果改变Neumann边界条件,则一端绝缘(不是焊剂),

enter image description here

那么,计算术语如何

T[n+1,j] = T[n,j] + s*(T[n,j-1] - 2*T[n,j] + T[n,j+1])

应该修改吗?

1 个答案:

答案 0 :(得分:7)

Neumann边界条件的典型方法是想象一个超出域一步的“鬼点”,并使用边界条件计算它的值;然后正常(使用PDE)进行网格内的点,包括Neumann边界。

鬼点允许我们对边界处的导数使用对称有限差分近似,即如果y是空间变量,则为(T[n, j+1] - T[n, j-1]) / (2*dy)。非对称逼近(T[n, j] - T[n, j-1]) / dy,不涉及鬼点,准确度要低得多:它引入的误差比PDE本身的离散化所涉及的误差差一个数量级。

因此,当j是T的最大可能索引时,边界条件表示“T[n, j+1]”应该被理解为T[n, j-1],这就是下面所做的。

for j in range(1, c-1):
    T[n+1,j] = T[n,j] + s*(T[n,j-1] - 2*T[n,j] + T[n,j+1])  # as before
j = c-1 
T[n+1, j] = T[n,j] + s*(T[n,j-1] - 2*T[n,j] + T[n,j-1])  # note the last term here