如何在python中使用自定义Apache Avro字段类型

时间:2018-03-23 09:56:43

标签: python apache-kafka avro

我可以访问Apache Kafka集群,并且我已经获得了一个描述Apache Avro序列化格式的文件。我正在python中编写一个小测试使用者,并且在尝试解析模式时遇到以下错误:

SchemaParseException: Type property "{u'items': u'com.myapp.avromsg.common.MilestoneField', u'type': u'array'}" not a valid Avro schema: Items schema (com.myapp.avromsg.common.MilestoneField) not a valid Avro schema: Could not make an Avro Schema object from com.myapp.avromsg.common.MilestoneField. (known names: [u'com.myapp.avromsg.runstatus.RunStatusMessage'])

在我看来,错误来自于不了解自定义字段类型MilestoneField。我将如何将此字段描述到我的脚本中,以便序列化格式能够正确解析?

以下是my_msg.avsc avro文件:

{
  "type": "record",
  "name": "RunStatusMessage",
  "namespace": "com.myapp.avromsg.runstatus",
  "fields": [
    {
      "name": "datasetID",
      "type": "string"
    },
    {
      "name": "runID",
      "type": ["string", "null"]
    },
    {
      "name": "registryRunID",
      "type": ["string", "null"]
    },
    {
      "name": "status",
      "type": "string"
    },
    {
      "name": "logs",
      "type": ["string", "null"]
    },
    {
      "name": "jobID",
      "type": ["string", "null"]
    },
    {
      "name": "validationsJson",
      "type": ["string", "null"]
    },
    {
      "name": "zone",
      "type": "string"
    },
    {
      "name": "milestoneFields",
      "type": {
        "type": "array",
        "items": "com.myapp.avromsg.common.MilestoneField"
      }
    },
    {
      "name": "ingestionParams",
      "type": {
        "type": "array",
        "items": "com.myapp.avromsg.common.MilestoneField"
      },
      "default": []
    },
    {
      "name": "timestamp",
      "type": [
        {
          "type": "long",
          "logicalType": "timestamp-millis"
        },
        {
          "type": "bytes",
          "logicalType": "decimal",
          "precision": 38,
          "scale": 0
        },
        "string",
        "int",
        "null"
      ]
    }
  ]
}

以下是我目前使用的代码:

import avro.schema
schema = avro.schema.parse(open('my_msg.avsc', 'rb').read())

2 个答案:

答案 0 :(得分:0)

不确定如何在pyhon中编码,但我可以提供java版本(我的期望它应该几乎相同)。您有两种选择,包括将MilestoneField对象的定义作为模式的一部分(如果您在多个部分中使用它,则根本不干净)或向Schema.Parser添加额外的类型。在示例中,我对模式进行了硬编码,但其思路与文件

相同
public static void main(String [] args){
    Schema.Parser parser = new Schema.Parser();

    Schema pojo = new Schema.Parser().parse("{\n" +
            "  \"namespace\": \"io.fama.pubsub.schema\",\n" +
            "  \"type\": \"record\",\n" +
            "  \"name\": \"Pojo\",\n" +
            "  \"fields\": [\n" +
            "    {\n" +
            "      \"name\": \"field\",\n" +
            "      \"type\": \"string\"\n" +
            "    }\n" +
            "  ]\n" +
            "}");

    HashMap<String, Schema> extraTypes = new HashMap<>();
    extraTypes.put("Pojo", pojo);
    parser.addTypes(extraTypes);

    Schema schema = parser.parse("{\n" +
            "  \"namespace\": \"io.fama.pubsub.schema\",\n" +
            "  \"type\": \"record\",\n" +
            "  \"name\": \"PojoCollection\",\n" +
            "  \"fields\": [\n" +
            "    {\n" +
            "      \"name\": \"pojosCollection\",\n" +
            "      \"type\": {\n" +
            "        \"type\": \"array\",\n" +
            "        \"items\": \"Pojo\"\n" +
            "      }\n" +
            "    }, {\n" +
            "      \"name\": \"additionaField\",\n" +
            "      \"type\": [\"null\", \"string\"]\n" +
            "    }\n" +
            "  ]\n" +
            "}");
}

如您所见,您可以使用addTypes方法在架构中包含其他自定义对象。方法参数是Map<string,Schema>,因此您需要先解析自定义对象模式。现在,如果您拥有模式的类版本(由avro生成),您应该可以像这样添加它

    extraTypes.put("MilestoneField", MilestoneField.SCHEMA$);

答案 1 :(得分:0)

假设我有avsc个文件定义我的自定义字段和我的消息架构,这里是我如何使用python avro

import avro.schema
import json

schema_list = []

# First add the custom field to the schema list
custom_json = json.loads(open('custom_field.avsc', 'rb').read())
schema_list.append(custom_json)

# Then add the main message schema
main _json = json.loads(open('main _msg.avsc', 'rb').read())
schema_list.append(main _json)

# Convert the schema json to a JSON string
schema_json = json.dumps(schema_list)

# Parse the schema
full_msg_schema = avro.schema.parse(schema_json)