我有一个问题,我正在努力寻找解决方案或解决方法。
我有一些模型句子,例如
model_sentences = data.frame("model_id" = c("model_id_1", "model_id_2"), "model_text" = c("Company x had 3000 employees in 2016.",
"Google makes 300 dollar in revenue in 2018."))
和一些文字
data = data.frame("id" = c("id1", "id2"), "text" = c("Company y is expected to employ 2000 employees in 2020. This is an increase of 10%. Some stupid sentences.",
"Amazon´s revenue is 400 dollar in 2020. That is twice as much as last year."))
我想从那些类似于模型句子的文本中提取句子。
像这样的东西将是我想要的解决方案
result = data.frame("id" = c("id1", "id2"), "model_id" = c("model_id_1", "model_id_2"), "sentence_from_data" = c("Company y is expected to employ 2000 employees in 2020.", "Amazon´s revenue is 400 dollar in 2020."), "score" = c(0.5, 0.4))
也许有可能找到一种'similar_score'。
我使用此功能按句子分割文本:
split_by_sentence <- function (text) {
result <-unlist(strsplit(text, "(?<=[[:alnum:]]{4}[?!.])\\s+", perl=TRUE))
result <- stri_trim_both(result)
result <- result [nchar (result) > 0]
if (length (result) == 0)
result <- ""
return (result)
}
但我不知道如何将每个句子与模型句子进行比较。 我很高兴有任何建议。
答案 0 :(得分:0)
查看此资料包stringdist
示例:
library(stringdist)
mysent = "This is a sentence"
apply(model_sentences, 1, function(row) {
stringdist(row['model_text'], mysent, method="jaccard")
})
它将返回mysent到model_text变量的jaccard距离。值越小,句子在给定距离测量方面更相似。