尝试删除arrival_time的尾随零,列数据类型为时间
SELECT * FROM TABLE
我得到了这个:
station_name | arrival_time
--------------+--------------------
Wellington | 06:05:00.000000000
我需要结果如下:
station_name | arrival_time
--------------+--------------------
Wellington | 06:05:00
我是CQL的新手,提前谢谢。
答案 0 :(得分:1)
因此,您无法使用time
类型在Cassandra中实际执行此操作。但是,您可以使用timestamp
。
cassdba@cqlsh:stackoverflow> CREATE TABLE arrival_time2 (station_name TEXT PRIMARY KEY,
arrival_time time, arrival_timestamp timestamp);
cassdba@cqlsh:stackoverflow> INSERT INTO arrival_time2 (station_name , arrival_time , arrival_timestamp)
VALUES ('Wellington','06:05:00','2018-03-22 06:05:00');
cassdba@cqlsh:stackoverflow> SELECT * FROM arrival_time2;
station_name | arrival_time | arrival_timestamp
--------------+--------------------+---------------------------------
Wellington | 06:05:00.000000000 | 2018-03-22 11:05:00.000000+0000
(1 rows)
当然,这也不是你想要的,真的。接下来,您需要在time_format
的{{1}}部分设置[ui]
。
~/.cassandra/cqlshrc
重启cqlsh,这应该有效:
[ui]
time_format = %Y-%m-%d %H:%M:%S
答案 1 :(得分:0)
select station_name, SUBSTRING( Convert(Varchar(20),arrival_time), 0, 9) As arrival_time
from [Table]
使用以下表格和数据格式
CREATE TABLE [dbo].[ArrivalStation](
[station_name] [varchar](500) NULL,
[arrival_time] [Time](7) NULL
) ON [PRIMARY]
INSERT [dbo].[ArrivalStation] ([station_name], [arrival_time]) VALUES (N'Wellington ', N'06:05:00.0000000')
INSERT [dbo].[ArrivalStation] ([station_name], [arrival_time]) VALUES (N'Singapore', N'12:35:29.1234567')
答案 2 :(得分:-2)
class EncoderRNN(nn.Module):
def __init__(self, dict_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(dict_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
def forward(self, input_batch, input_batch_length, hidden):
embedded = self.embedding(input_batch)
packed_input = nn.utils.rnn.pack_padded_sequence(embedded, input_batch_length.cpu().numpy(), batch_first=True)
output, hidden = self.gru(packed_input, hidden)
return output, hidden
class DecoderRNN(nn.Module):
def __init__(self, hidden_size, dict_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(dict_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
self.out = nn.Linear(hidden_size, dict_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, target_batch, target_batch_length, hidden, train=False):
embedded = self.embedding(target_batch)
output = F.relu(embedded)
if train:
# minus 1 to eliminate <EOS>
output = nn.utils.rnn.pack_padded_sequence(output, (target_batch_length - 1).cpu().numpy(),
batch_first=True)
output, hidden = self.gru(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden