是否可以有两个fit_generator?
我创建了一个带有两个输入的模型, 型号配置如下所示。
标签Y对X1和X2数据使用相同的标签。
将继续发生以下错误。
检查模型输入时出错:您传递给模型的Numpy数组列表不是模型预期的大小。预期 看到2个数组,但得到以下1个数组的列表: [array([[[[[0.75686276,0.75686276,0.75686276], [0.75686276,0.75686276,0.75686276], [0.75686276,0.75686276,0.75686276], ... [0.65882355,0.65882355,0.65882355 ......
我的代码如下所示:
def generator_two_img(X1, X2, Y,batch_size):
generator = ImageDataGenerator(rotation_range=15,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
genX1 = generator.flow(X1, Y, batch_size=batch_size)
genX2 = generator.flow(X2, Y, batch_size=batch_size)
while True:
X1 = genX1.__next__()
X2 = genX2.__next__()
yield [X1, X2], Y
"""
.................................
"""
hist = model.fit_generator(generator_two_img(x_train, x_train_landmark,
y_train, batch_size),
steps_per_epoch=len(x_train) // batch_size, epochs=nb_epoch,
callbacks = callbacks,
validation_data=(x_validation, y_validation),
validation_steps=x_validation.shape[0] // batch_size,
`enter code here`verbose=1)
答案 0 :(得分:11)
试试这个发电机:
def generator_two_img(X1, X2, y, batch_size):
genX1 = gen.flow(X1, y, batch_size=batch_size, seed=1)
genX2 = gen.flow(X2, y, batch_size=batch_size, seed=1)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield [X1i[0], X2i[0]], X1i[1]
在Thanh Nguyen评论之后编辑
3个输入的生成器:
def generator_two_img(X1, X2, X3, y, batch_size):
genX1 = gen.flow(X1, y, batch_size=batch_size, seed=1)
genX2 = gen.flow(X2, y, batch_size=batch_size, seed=1)
genX3 = gen.flow(X3, y, batch_size=batch_size, seed=1)
while True:
X1i = genX1.next()
X2i = genX2.next()
X3i = genX3.next()
yield [X1i[0], X2i[0], X3i[0]], X1i[1]
答案 1 :(得分:0)
我有一个TimeseriesGenerator
的多个输入的实现,我已经对其进行了修改(不幸的是,我无法对其进行测试),以实现ImageDataGenerator
的示例。我的方法是为keras.utils.Sequence
的多个生成器构建一个包装器类,然后实现它的基本方法:__len__
和__getitem__
:
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import Sequence
class MultipleInputGenerator(Sequence):
"""Wrapper of 2 ImageDataGenerator"""
def __init__(self, X1, X2, Y, batch_size):
# Keras generator
self.generator = ImageDataGenerator(rotation_range=15,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
# Real time multiple input data augmentation
self.genX1 = self.generator.flow(X1, Y, batch_size=batch_size)
self.genX2 = self.generator.flow(X2, Y, batch_size=batch_size)
def __len__(self):
"""It is mandatory to implement it on Keras Sequence"""
return self.genX1.__len__()
def __getitem__(self, index):
"""Getting items from the 2 generators and packing them"""
X1_batch, Y_batch = self.genX1.__getitem__(index)
X2_batch, Y_batch = self.genX2.__getitem__(index)
X_batch = [X1_batch, X2_batch]
return X_batch, Y_batch
实例化生成器后,可以将其与model.fit_generator()
一起使用。