def fit(self):
tfidf = TfidfVectorizer(strip_accents=None,lowercase=False,
preprocessor=self.preprocessor)
param_grid = [{'vect__ngram_range' : [(1,1)],
'vect__stop_words':[self.stop,None],
'vect__tokenizer':[self.tokenizer,self.tokenizer_porter],
'clf__C':[1.0,10.0,100.0]},
{'vect__ngram_range':[(1,1)],
'vect__stop_words':[self.stop,None],
'vect__tokenizer':[self.tokenizer,
self.tokenizer_porter],
'vect__use_idf':[False],
'vect__norm':[None],
'clf__penalty':['l1','l2'],
'clf__C':[1.0,10.0,100.0]}]
lr_tfidf = Pipeline([('vect', tfidf),('clf',LinearSVC())])
gs_lr_tfidf = GridSearchCV(lr_tfidf,
param_grid,scoring='accuracy',cv=2,verbose=1,n_jobs=-1)
gs_lr_tfidf.fit(self.X_train,self.y_train)
#When I Fit model
print(accuracy_score(self.y_test,gs_lr_tfidf.predict(self.X_test)))
** **Process SpawnPoolWorker-16:
Traceback (most recent call last):
File "D:\Anaconda3\lib\multiprocessing\process.py", line 249, in _bootstrap
self.run()
File "D:\Anaconda3\lib\multiprocessing\process.py", line 93, in run
self._target(*self._args, **self._kwargs)
File "D:\Anaconda3\lib\multiprocessing\pool.py", line 108, in worker
task = get()
File "D:\Anaconda3\lib\site-packages\sklearn\externals\joblib\pool.py",
line 362, in get
return recv()
File "D:\Anaconda3\lib\multiprocessing\connection.py", line 251, in recv
return _ForkingPickler.loads(buf.getbuffer())
AttributeError: Can't get attribute 'NLP' on <module '__main__' (built-in)>
[I 10:43:06.693 NotebookApp] Saving file at /NLP class.ipynb****