使用tapply为数据子集生成方差

时间:2018-03-20 13:54:43

标签: r apply tapply

我有一个基因列表,每个基因有1-3个探针,每个探针的强度值。一个例子如下:

GENE_ID             Probes                  Intensity 
GENE:JGI_V11_100009 GENE:JGI_V11_1000090102 253.479375
GENE:JGI_V11_100009 GENE:JGI_V11_1000090202 712.235625
GENE:JGI_V11_100036 GENE:JGI_V11_1000360103 449.065625
GENE:JGI_V11_100036 GENE:JGI_V11_1000360203 641.341875
GENE:JGI_V11_100036 GENE:JGI_V11_1000360303 1237.07125
GENE:JGI_V11_100044 GENE:JGI_V11_1000440101 456.133125
GENE:JGI_V11_100045 GENE:JGI_V11_1000450101 369.790625
GENE:JGI_V11_100062 GENE:JGI_V11_1000620102 2839.97375
GENE:JGI_V11_100062 GENE:JGI_V11_1000620202 6384.55125

我想确定每个基因探针之间的差异(因此对于每个基因我都有方差值)

我知道我应该使用tapply()函数但不知道如何完成除此之外:

tapply( , , var)

2 个答案:

答案 0 :(得分:0)

您可以使用data.tabledplyr来完成此操作。这是一个经典的group_by案例:

library(dplyr)
df %>% 
    group_by(GENE_ID) %>% 
    mutate(new_var = var(Intensity))


library(data.table)
setDT(df)
df[, new_var := var(Intensity), .(GENE_ID)]

两种情况下的输出都来自:

               GENE_ID                  Probes Intensity   new_var
1: GENE:JGI_V11_100009 GENE:JGI_V11_1000090102  253.4794  105228.6
2: GENE:JGI_V11_100009 GENE:JGI_V11_1000090202  712.2356  105228.6
3: GENE:JGI_V11_100036 GENE:JGI_V11_1000360103  449.0656  168802.8
4: GENE:JGI_V11_100036 GENE:JGI_V11_1000360203  641.3419  168802.8
5: GENE:JGI_V11_100036 GENE:JGI_V11_1000360303 1237.0712  168802.8
6: GENE:JGI_V11_100044 GENE:JGI_V11_1000440101  456.1331        NA
7: GENE:JGI_V11_100045 GENE:JGI_V11_1000450101  369.7906        NA
8: GENE:JGI_V11_100062 GENE:JGI_V11_1000620102 2839.9738 6282014.8
9: GENE:JGI_V11_100062 GENE:JGI_V11_1000620202 6384.5513 6282014.8

答案 1 :(得分:0)

这是来自基础R的经典ave案例。虽然tapply返回一个长度相等的向量到分组因子的唯一值,但ave返回分组平均值(或其他)具有相同向量长度的数据帧/矩阵列(根据需要重复值):

gene_df$Probes_var <- ave(gene_df$Intensity, gene_df$GENE_ID, FUN=var)
gene_df

#               GENE_ID                  Probes Intensity Probes_var
# 1 GENE:JGI_V11_100009 GENE:JGI_V11_1000090102  253.4794   105228.6
# 2 GENE:JGI_V11_100009 GENE:JGI_V11_1000090202  712.2356   105228.6
# 3 GENE:JGI_V11_100036 GENE:JGI_V11_1000360103  449.0656   168802.8
# 4 GENE:JGI_V11_100036 GENE:JGI_V11_1000360203  641.3419   168802.8
# 5 GENE:JGI_V11_100036 GENE:JGI_V11_1000360303 1237.0712   168802.8
# 6 GENE:JGI_V11_100044 GENE:JGI_V11_1000440101  456.1331         NA
# 7 GENE:JGI_V11_100045 GENE:JGI_V11_1000450101  369.7906         NA
# 8 GENE:JGI_V11_100062 GENE:JGI_V11_1000620102 2839.9738  6282014.8
# 9 GENE:JGI_V11_100062 GENE:JGI_V11_1000620202 6384.5513  6282014.8