如this answer by Sam Roberts和this other answer by gnovice所述,MATLAB的冒号运算符(start:step:stop
)以linspace
的不同方式创建值向量。 Sam Roberts特别指出:
冒号运算符将增量添加到起点,并从终点减去减量以达到中间点。通过这种方式,它可以确保输出向量尽可能对称。
但是,The MathWorks中有关此内容的官方文档已从其网站中删除。
如果Sam的描述是正确的,那么步长中的错误不会是对称的吗?
>> step = 1/3;
>> C = 0:step:5;
>> diff(C) - step
ans =
1.0e-15 *
Columns 1 through 10
0 0 0.0555 -0.0555 -0.0555 0.1665 -0.2776 0.6106 -0.2776 0.1665
Columns 11 through 15
0.1665 -0.2776 -0.2776 0.6106 -0.2776
关于冒号运算符的有趣事项:
其值取决于其长度:
>> step = 1/3;
>> C = 0:step:5;
>> X = 0:step:3;
>> C(1:10) - X
ans =
1.0e-15 *
0 0 0 0 0 -0.2220 0 -0.4441 0.4441 0
如果它们被舍入,它可以生成重复值:
>> E = 1-eps : eps/4 : 1+eps;
>> E-1
ans =
1.0e-15 *
-0.2220 -0.2220 -0.1110 0 0 0 0 0.2220 0.2220
最后一个值有一个容差,如果步长在末尾创建一个值,则仍会使用此结束值:
>> A = 0 : step : 5-2*eps(5)
A =
Columns 1 through 10
0 0.3333 0.6667 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000
Columns 11 through 16
3.3333 3.6667 4.0000 4.3333 4.6667 5.0000
>> A(end) == 5 - 2*eps(5)
ans =
logical
1
>> step*15 - 5
ans =
0
答案 0 :(得分:10)
Sam's answer引用的已删除页面仍为archived by the Way Back Machine。幸运的是,即使附加的M文件colonop
也存在。似乎这个函数仍然与MATLAB的作用相匹配(我在R2017a上):
>> all(0:step:5 == colonop(0,step,5))
ans =
logical
1
>> all(-pi:pi/21:pi == colonop(-pi,pi/21,pi))
ans =
logical
1
我将在这里复制函数对一般情况的作用(有一些生成整数向量和处理特殊情况的快捷方式)。我用更有意义的变量替换了函数的变量名。输入为start
,step
和stop
。
首先,它会计算start
和stop
之间的步数。如果最后一步超过stop
超过公差,则不会采取:
n = round((stop-start)/step);
tol = 2.0*eps*max(abs(start),abs(stop));
sig = sign(step);
if sig*(start+n*step - stop) > tol
n = n - 1;
end
这解释了问题中提到的最后一次观察。
接下来,它计算最后一个元素的值,并确保它不超过stop
值,即使它允许在之前的计算中超过它。
last = start + n*step;
if sig*(last-stop) > -tol
last = stop;
end
这就是为什么问题中向量A
中的lasat值实际上具有stop
值作为最后一个值的原因。
接下来,它将输出数组计算为两部分,如所宣传的那样:数组的左半部分和右半部分是独立填充的:
out = zeros(1,n+1);
k = 0:floor(n/2);
out(1+k) = start + k*step;
out(n+1-k) = last - k*step;
请注意,它们不是通过递增来填充,而是通过计算整数数组并将其乘以步长来填充,就像linspace
一样。这使得对问题中的数组E
的观察得到了解释。区别在于通过从last
值中减去这些值来填充数组的右半部分。
作为最后一步,对于奇数大小的数组,中间值是单独计算的,以确保它恰好位于两个端点的中间位置:
if mod(n,2) == 0
out(n/2+1) = (start+last)/2;
end
完整功能colonop
复制在底部。
请注意,分别填充数组的左侧和右侧并不意味着步长中的错误应该是完全对称的。这些错误由舍入误差给出。但是,在步长大小不能达到stop
点的情况下确实有所不同,就像问题中数组A
的情况一样。在这种情况下,稍微缩短的步长是在数组的中间,而不是在结尾处:
>> step=1/3;
>> A = 0 : step : 5-2*eps(5);
>> A/step-(0:15)
ans =
1.0e-14 *
Columns 1 through 10
0 0 0 0 0 0 0 -0.0888 -0.4441 -0.5329
Columns 11 through 16
-0.3553 -0.3553 -0.5329 -0.5329 -0.3553 -0.5329
但即使在准确达到stop
点的情况下,也会在中间积累一些额外的错误。以问题中的数组C
为例。 linspace
:
C = 0:1/3:5;
lims = eps(C);
subplot(2,1,1)
plot(diff(C)-1/3,'o-')
hold on
plot(lims,'k:')
plot(-lims,'k:')
plot([1,15],[0,0],'k:')
ylabel('error')
title('0:1/3:5')
L = linspace(0,5,16);
subplot(2,1,2)
plot(diff(L)-1/3,'x-')
hold on
plot(lims,'k:')
plot(-lims,'k:')
plot([1,15],[0,0],'k:')
title('linspace(0,5,16)')
ylabel('error')
<强> colonop
强>
function out = colonop(start,step,stop)
% COLONOP Demonstrate how the built-in a:d:b is constructed.
%
% v = colonop(a,b) constructs v = a:1:b.
% v = colonop(a,d,b) constructs v = a:d:b.
%
% v = a:d:b is not constructed using repeated addition. If the
% textual representation of d in the source code cannot be
% exactly represented in binary floating point, then repeated
% addition will appear to have accumlated roundoff error. In
% some cases, d may be so small that the floating point number
% nearest a+d is actually a. Here are two imporant examples.
%
% v = 1-eps : eps/4 : 1+eps is the nine floating point numbers
% closest to v = 1 + (-4:1:4)*eps/4. Since the spacing of the
% floating point numbers between 1-eps and 1 is eps/2 and the
% spacing between 1 and 1+eps is eps,
% v = [1-eps 1-eps 1-eps/2 1 1 1 1 1+eps 1+eps].
%
% Even though 0.01 is not exactly represented in binary,
% v = -1 : 0.01 : 1 consists of 201 floating points numbers
% centered symmetrically about zero.
%
% Ideally, in exact arithmetic, for b > a and d > 0,
% v = a:d:b should be the vector of length n+1 generated by
% v = a + (0:n)*d where n = floor((b-a)/d).
% In floating point arithmetic, the delicate computatations
% are the value of n, the value of the right hand end point,
% c = a+n*d, and symmetry about the mid-point.
if nargin < 3
stop = step;
step = 1;
end
tol = 2.0*eps*max(abs(start),abs(stop));
sig = sign(step);
% Exceptional cases.
if ~isfinite(start) || ~isfinite(step) || ~isfinite(stop)
out = NaN;
return
elseif step == 0 || start < stop && step < 0 || stop < start && step > 0
% Result is empty.
out = zeros(1,0);
return
end
% n = number of intervals = length(v) - 1.
if start == floor(start) && step == 1
% Consecutive integers.
n = floor(stop) - start;
elseif start == floor(start) && step == floor(step)
% Integers with spacing > 1.
q = floor(start/step);
r = start - q*step;
n = floor((stop-r)/step) - q;
else
% General case.
n = round((stop-start)/step);
if sig*(start+n*step - stop) > tol
n = n - 1;
end
end
% last = right hand end point.
last = start + n*step;
if sig*(last-stop) > -tol
last = stop;
end
% out should be symmetric about the mid-point.
out = zeros(1,n+1);
k = 0:floor(n/2);
out(1+k) = start + k*step;
out(n+1-k) = last - k*step;
if mod(n,2) == 0
out(n/2+1) = (start+last)/2;
end