我有一个包含整数的pandas.Series
,但我需要将这些整数转换为字符串以用于某些下游工具。假设我有一个Series
对象:
import numpy as np
import pandas as pd
x = pd.Series(np.random.randint(0, 100, 1000000))
在StackOverflow和其他网站上,我看到大多数人认为最好的方法是:
%% timeit
x = x.astype(str)
大约需要2秒钟。
当我使用x = x.apply(str)
时,只需0.2秒。
为什么x.astype(str)
这么慢?推荐的方式应该是x.apply(str)
吗?
我主要对python 3的行为感兴趣。
答案 0 :(得分:21)
让我们从一些一般性建议开始:如果您对找到Python代码的瓶颈感兴趣,可以使用分析器查找大部分时间吃掉的功能/部件。在这种情况下,我使用行分析器,因为您实际上可以看到实现和每行所花费的时间。
但是,默认情况下,这些工具无法使用C或Cython。考虑到CPython(我正在使用的Python解释器),NumPy和pandas大量使用C和Cython,我将在一定程度上限制分析。
实际上:人们可能通过使用调试符号和跟踪重新编译它来扩展分析到Cython代码,也可能是C代码,但是编译这些库并不是一件容易的事,所以我不会这样做(但如果有人喜欢这样做Cython documentation includes a page about profiling Cython code)。
但是,让我们看看我能走多远:
我将在这里使用line-profiler和Jupyter笔记本:
%load_ext line_profiler
import numpy as np
import pandas as pd
x = pd.Series(np.random.randint(0, 100, 100000))
x.astype
%lprun -f x.astype x.astype(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
87 @wraps(func)
88 def wrapper(*args, **kwargs):
89 1 12 12.0 0.0 old_arg_value = kwargs.pop(old_arg_name, None)
90 1 5 5.0 0.0 if old_arg_value is not None:
91 if mapping is not None:
...
118 1 663354 663354.0 100.0 return func(*args, **kwargs)
因此,它只是一个装饰者,100%的时间花在装饰功能上。因此,让我们分析一下装饰函数:
%lprun -f x.astype.__wrapped__ x.astype(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
3896 @deprecate_kwarg(old_arg_name='raise_on_error', new_arg_name='errors',
3897 mapping={True: 'raise', False: 'ignore'})
3898 def astype(self, dtype, copy=True, errors='raise', **kwargs):
3899 """
...
3975 """
3976 1 28 28.0 0.0 if is_dict_like(dtype):
3977 if self.ndim == 1: # i.e. Series
...
4001
4002 # else, only a single dtype is given
4003 1 14 14.0 0.0 new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors,
4004 1 685863 685863.0 99.9 **kwargs)
4005 1 340 340.0 0.0 return self._constructor(new_data).__finalize__(self)
再一行就是瓶颈,所以让我们检查_data.astype
方法:
%lprun -f x._data.astype x.astype(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
3461 def astype(self, dtype, **kwargs):
3462 1 695866 695866.0 100.0 return self.apply('astype', dtype=dtype, **kwargs)
好的,另一位代表,让我们看看_data.apply
做了什么:
%lprun -f x._data.apply x.astype(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
3251 def apply(self, f, axes=None, filter=None, do_integrity_check=False,
3252 consolidate=True, **kwargs):
3253 """
...
3271 """
3272
3273 1 12 12.0 0.0 result_blocks = []
...
3309
3310 1 10 10.0 0.0 aligned_args = dict((k, kwargs[k])
3311 1 29 29.0 0.0 for k in align_keys
3312 if hasattr(kwargs[k], 'reindex_axis'))
3313
3314 2 28 14.0 0.0 for b in self.blocks:
...
3329 1 674974 674974.0 100.0 applied = getattr(b, f)(**kwargs)
3330 1 30 30.0 0.0 result_blocks = _extend_blocks(applied, result_blocks)
3331
3332 1 10 10.0 0.0 if len(result_blocks) == 0:
3333 return self.make_empty(axes or self.axes)
3334 1 10 10.0 0.0 bm = self.__class__(result_blocks, axes or self.axes,
3335 1 76 76.0 0.0 do_integrity_check=do_integrity_check)
3336 1 13 13.0 0.0 bm._consolidate_inplace()
3337 1 7 7.0 0.0 return bm
再一次......一个函数调用一直在进行,这次是x._data.blocks[0].astype
:
%lprun -f x._data.blocks[0].astype x.astype(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
542 def astype(self, dtype, copy=False, errors='raise', values=None, **kwargs):
543 1 18 18.0 0.0 return self._astype(dtype, copy=copy, errors=errors, values=values,
544 1 671092 671092.0 100.0 **kwargs)
..这是另一位代表......
%lprun -f x._data.blocks[0]._astype x.astype(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
546 def _astype(self, dtype, copy=False, errors='raise', values=None,
547 klass=None, mgr=None, **kwargs):
548 """
...
557 """
558 1 11 11.0 0.0 errors_legal_values = ('raise', 'ignore')
559
560 1 8 8.0 0.0 if errors not in errors_legal_values:
561 invalid_arg = ("Expected value of kwarg 'errors' to be one of {}. "
562 "Supplied value is '{}'".format(
563 list(errors_legal_values), errors))
564 raise ValueError(invalid_arg)
565
566 1 23 23.0 0.0 if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype):
567 msg = ("Expected an instance of {}, but got the class instead. "
568 "Try instantiating 'dtype'.".format(dtype.__name__))
569 raise TypeError(msg)
570
571 # may need to convert to categorical
572 # this is only called for non-categoricals
573 1 72 72.0 0.0 if self.is_categorical_astype(dtype):
...
595
596 # astype processing
597 1 16 16.0 0.0 dtype = np.dtype(dtype)
598 1 19 19.0 0.0 if self.dtype == dtype:
...
603 1 8 8.0 0.0 if klass is None:
604 1 13 13.0 0.0 if dtype == np.object_:
605 klass = ObjectBlock
606 1 6 6.0 0.0 try:
607 # force the copy here
608 1 7 7.0 0.0 if values is None:
609
610 1 8 8.0 0.0 if issubclass(dtype.type,
611 1 14 14.0 0.0 (compat.text_type, compat.string_types)):
612
613 # use native type formatting for datetime/tz/timedelta
614 1 15 15.0 0.0 if self.is_datelike:
615 values = self.to_native_types()
616
617 # astype formatting
618 else:
619 1 8 8.0 0.0 values = self.values
620
621 else:
622 values = self.get_values(dtype=dtype)
623
624 # _astype_nansafe works fine with 1-d only
625 1 665777 665777.0 99.9 values = astype_nansafe(values.ravel(), dtype, copy=True)
626 1 32 32.0 0.0 values = values.reshape(self.shape)
627
628 1 17 17.0 0.0 newb = make_block(values, placement=self.mgr_locs, dtype=dtype,
629 1 269 269.0 0.0 klass=klass)
630 except:
631 if errors == 'raise':
632 raise
633 newb = self.copy() if copy else self
634
635 1 8 8.0 0.0 if newb.is_numeric and self.is_numeric:
...
642 1 6 6.0 0.0 return newb
......好吧,还没有。我们来看看astype_nansafe
:
%lprun -f pd.core.internals.astype_nansafe x.astype(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
640 def astype_nansafe(arr, dtype, copy=True):
641 """ return a view if copy is False, but
642 need to be very careful as the result shape could change! """
643 1 13 13.0 0.0 if not isinstance(dtype, np.dtype):
644 dtype = pandas_dtype(dtype)
645
646 1 8 8.0 0.0 if issubclass(dtype.type, text_type):
647 # in Py3 that's str, in Py2 that's unicode
648 1 663317 663317.0 100.0 return lib.astype_unicode(arr.ravel()).reshape(arr.shape)
...
再一次,它是100%的一行,所以我将进一步发挥一个功能:
%lprun -f pd.core.dtypes.cast.lib.astype_unicode x.astype(str)
UserWarning: Could not extract a code object for the object <built-in function astype_unicode>
好的,我们找到了built-in function
,这意味着它是一个C函数。在这种情况下,它是一个Cython函数。但这意味着我们无法通过line-profiler深入挖掘。所以我现在就停在这里。
x.apply
%lprun -f x.apply x.apply(str)
Line # Hits Time Per Hit % Time Line Contents
==============================================================
2426 def apply(self, func, convert_dtype=True, args=(), **kwds):
2427 """
...
2523 """
2524 1 84 84.0 0.0 if len(self) == 0:
2525 return self._constructor(dtype=self.dtype,
2526 index=self.index).__finalize__(self)
2527
2528 # dispatch to agg
2529 1 11 11.0 0.0 if isinstance(func, (list, dict)):
2530 return self.aggregate(func, *args, **kwds)
2531
2532 # if we are a string, try to dispatch
2533 1 12 12.0 0.0 if isinstance(func, compat.string_types):
2534 return self._try_aggregate_string_function(func, *args, **kwds)
2535
2536 # handle ufuncs and lambdas
2537 1 7 7.0 0.0 if kwds or args and not isinstance(func, np.ufunc):
2538 f = lambda x: func(x, *args, **kwds)
2539 else:
2540 1 6 6.0 0.0 f = func
2541
2542 1 154 154.0 0.1 with np.errstate(all='ignore'):
2543 1 11 11.0 0.0 if isinstance(f, np.ufunc):
2544 return f(self)
2545
2546 # row-wise access
2547 1 188 188.0 0.1 if is_extension_type(self.dtype):
2548 mapped = self._values.map(f)
2549 else:
2550 1 6238 6238.0 3.3 values = self.asobject
2551 1 181910 181910.0 95.5 mapped = lib.map_infer(values, f, convert=convert_dtype)
2552
2553 1 28 28.0 0.0 if len(mapped) and isinstance(mapped[0], Series):
2554 from pandas.core.frame import DataFrame
2555 return DataFrame(mapped.tolist(), index=self.index)
2556 else:
2557 1 19 19.0 0.0 return self._constructor(mapped,
2558 1 1870 1870.0 1.0 index=self.index).__finalize__(self)
同样,它是一个占用大部分时间的功能:lib.map_infer
...
%lprun -f pd.core.series.lib.map_infer x.apply(str)
Could not extract a code object for the object <built-in function map_infer>
好的,这是另一个Cython功能。
这次还有另外一个(尽管不那么重要)贡献者〜{3}:values = self.asobject
。但我现在忽略了这一点,因为我们对主要贡献者感兴趣。
astype
这是astype_unicode
函数:
cpdef ndarray[object] astype_unicode(ndarray arr):
cdef:
Py_ssize_t i, n = arr.size
ndarray[object] result = np.empty(n, dtype=object)
for i in range(n):
# we can use the unsafe version because we know `result` is mutable
# since it was created from `np.empty`
util.set_value_at_unsafe(result, i, unicode(arr[i]))
return result
此函数使用此助手:
cdef inline set_value_at_unsafe(ndarray arr, object loc, object value):
cdef:
Py_ssize_t i, sz
if is_float_object(loc):
casted = int(loc)
if casted == loc:
loc = casted
i = <Py_ssize_t> loc
sz = cnp.PyArray_SIZE(arr)
if i < 0:
i += sz
elif i >= sz:
raise IndexError('index out of bounds')
assign_value_1d(arr, i, value)
它本身使用这个C函数:
PANDAS_INLINE int assign_value_1d(PyArrayObject* ap, Py_ssize_t _i,
PyObject* v) {
npy_intp i = (npy_intp)_i;
char* item = (char*)PyArray_DATA(ap) + i * PyArray_STRIDE(ap, 0);
return PyArray_DESCR(ap)->f->setitem(v, item, ap);
}
apply
这是map_infer
函数的实现:
def map_infer(ndarray arr, object f, bint convert=1):
cdef:
Py_ssize_t i, n
ndarray[object] result
object val
n = len(arr)
result = np.empty(n, dtype=object)
for i in range(n):
val = f(util.get_value_at(arr, i))
# unbox 0-dim arrays, GH #690
if is_array(val) and PyArray_NDIM(val) == 0:
# is there a faster way to unbox?
val = val.item()
result[i] = val
if convert:
return maybe_convert_objects(result,
try_float=0,
convert_datetime=0,
convert_timedelta=0)
return result
有了这个助手:
cdef inline object get_value_at(ndarray arr, object loc):
cdef:
Py_ssize_t i, sz
int casted
if is_float_object(loc):
casted = int(loc)
if casted == loc:
loc = casted
i = <Py_ssize_t> loc
sz = cnp.PyArray_SIZE(arr)
if i < 0 and sz > 0:
i += sz
elif i >= sz or sz == 0:
raise IndexError('index out of bounds')
return get_value_1d(arr, i)
使用此C函数:
PANDAS_INLINE PyObject* get_value_1d(PyArrayObject* ap, Py_ssize_t i) {
char* item = (char*)PyArray_DATA(ap) + i * PyArray_STRIDE(ap, 0);
return PyArray_Scalar(item, PyArray_DESCR(ap), (PyObject*)ap);
}
最终调用的Cython代码之间存在一些差异。
astype
使用的unicode
使用apply
,%load_ext cython
%%cython
import numpy as np
cimport numpy as np
cpdef object func_called_by_astype(np.ndarray arr):
cdef np.ndarray[object] ret = np.empty(arr.size, dtype=object)
for i in range(arr.size):
ret[i] = unicode(arr[i])
return ret
cpdef object func_called_by_apply(np.ndarray arr, object f):
cdef np.ndarray[object] ret = np.empty(arr.size, dtype=object)
for i in range(arr.size):
ret[i] = f(arr[i])
return ret
路径使用传入的函数。让我们看看是否有所作为(再次IPython / Jupyter使它成为现实很容易自己编译Cython代码):
import numpy as np
arr = np.random.randint(0, 10000, 1000000)
%timeit func_called_by_astype(arr)
514 ms ± 11.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit func_called_by_apply(arr, str)
632 ms ± 43.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
定时:
apply
好的,存在差异,但错误,实际上表明asobject
会稍微慢。
但请记住我之前在apply
函数中提到的import numpy as np
arr = np.random.randint(0, 10000, 1000000)
%timeit func_called_by_astype(arr)
557 ms ± 33.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit func_called_by_apply(arr.astype(object), str)
317 ms ± 13.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
调用?这可能是原因吗?我们来看看:
str
现在看起来更好。转换为对象数组使得通过应用调用的函数更快。这有一个简单的原因:object
是一个Python函数,如果你已经拥有Python对象并且NumPy(或Pandas)不需要为存储的值创建一个Python包装器,它们通常要快得多在数组中(通常不是Python对象,除非数组是dtype val = f(util.get_value_at(arr, i))
if is_array(val) and PyArray_NDIM(val) == 0:
val = val.item()
result[i] = val
)。
然而,这并不能解释您所看到的巨大差异。我怀疑在迭代数组的方式和结果中设置元素的方式实际上存在另外的差异。很可能是:
map_infer
for i in range(n):
# we can use the unsafe version because we know `result` is mutable
# since it was created from `np.empty`
util.set_value_at_unsafe(result, i, unicode(arr[i]))
函数的一部分比以下更快:
astype(str)
由map_infer
路径调用。第一个函数的注释似乎表明x.astype(str)
的作者实际上试图尽可能快地编写代码(请参阅关于&#34的评论;是否有更快的解包方法?&#34;而另一个可能是在没有特别关注性能的情况下编写的。但这只是猜测。
同样在我的计算机上,我实际上非常接近x.apply(str)
和import numpy as np
arr = np.random.randint(0, 100, 1000000)
s = pd.Series(arr)
%timeit s.astype(str)
535 ms ± 23.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit func_called_by_astype(arr)
547 ms ± 21.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit s.apply(str)
216 ms ± 8.48 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit func_called_by_apply(arr.astype(object), str)
272 ms ± 12.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
的效果:
%timeit s.values.astype(str) # array of strings
407 ms ± 8.56 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit list(map(str, s.values.tolist())) # list of strings
184 ms ± 5.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
请注意,我还检查了一些返回不同结果的其他变体:
list
有趣的是,map
和import pandas as pd
import simple_benchmark
def Series_astype(series):
return series.astype(str)
def Series_apply(series):
return series.apply(str)
def Series_tolist_map(series):
return list(map(str, series.values.tolist()))
def Series_values_astype(series):
return series.values.astype(str)
arguments = {2**i: pd.Series(np.random.randint(0, 100, 2**i)) for i in range(2, 20)}
b = simple_benchmark.benchmark(
[Series_astype, Series_apply, Series_tolist_map, Series_values_astype],
arguments,
argument_name='Series size'
)
%matplotlib notebook
b.plot()
的Python循环似乎是我计算机上最快的。
我实际上做了一个小基准,包括情节:
Versions
--------
Python 3.6.5
NumPy 1.14.2
Pandas 0.22.0
请注意,它是一个对数日志图,因为我在基准测试中涵盖了大量的尺寸。然而,更低意味着更快。
对于不同版本的Python / NumPy / Pandas,结果可能会有所不同。所以如果你想比较它,这些是我的版本:
{{1}}
答案 1 :(得分:14)
<强>性能强>
在开始任何调查之前,值得查看实际表现,因为与流行的观点相反,list(map(str, x))
似乎慢于而不是x.apply(str)
。
import pandas as pd, numpy as np
### Versions: Pandas 0.20.3, Numpy 1.13.1, Python 3.6.2 ###
x = pd.Series(np.random.randint(0, 100, 100000))
%timeit x.apply(str) # 42ms (1)
%timeit x.map(str) # 42ms (2)
%timeit x.astype(str) # 559ms (3)
%timeit [str(i) for i in x] # 566ms (4)
%timeit list(map(str, x)) # 536ms (5)
%timeit x.values.astype(str) # 25ms (6)
值得注意的一点:
lambda
函数]。为什么x.map / x.apply快?
此似乎是,因为它使用快速compiled Cython code:
cpdef ndarray[object] astype_str(ndarray arr):
cdef:
Py_ssize_t i, n = arr.size
ndarray[object] result = np.empty(n, dtype=object)
for i in range(n):
# we can use the unsafe version because we know `result` is mutable
# since it was created from `np.empty`
util.set_value_at_unsafe(result, i, str(arr[i]))
return result
为什么x.astype(str)慢?
Pandas将str
应用于系列中的每个项目,而不是使用上面的Cython。
因此,效果与[str(i) for i in x]
/ list(map(str, x))
相当。
为什么x.values.astype(str)如此之快?
Numpy不对数组的每个元素应用函数。 One description我发现:
如果你做了
s.values.astype(str)
你得到的东西是一个持有物体int
。这是numpy
进行转换,而pandas迭代 每个项目并在其上调用str(item)
。所以,如果你做s.astype(str)
,你就有 一个持有str
的对象。
在无空的情况下存在技术原因why the numpy version hasn't been implemented。