我有131列的数据。第一列是我的Y.我有130 Xs。我想要有130个线性回归,即lm(y~x1),lm(y~x2),lm(y~x3)...... lm(y~x130)。然后得到每个适合的p值。我怎样才能让它更快? for loop还是申请?
答案 0 :(得分:1)
如果您的数据看起来像这样(只有更大)
> library(dplyr)
> tbl <- data.frame(
+ A = rnorm(10),
+ B = rnorm(10),
+ C = rnorm(10)
+ ) %>% mutate(
+ y = 2 * A + rnorm(10, .1)
+ )
> tbl
A B C y
1 -1.3430281 0.06457155 -0.31477796 -3.54276780
2 -0.8045598 0.55160502 -0.04486946 -0.17595827
3 0.6432380 -0.38036302 0.30313165 2.71317260
4 0.9282322 0.92453929 1.52828109 1.41677569
5 -0.2104841 -0.31510189 -1.32938820 -0.02714028
6 -1.8264372 0.92910256 0.16072524 -5.09970701
7 0.9568248 0.42829255 -0.28423084 1.58072449
8 -1.2061661 -1.10672961 0.69626390 -3.19605711
9 0.6173230 2.74964116 0.67350556 1.78849532
10 -1.1575590 -0.01747244 -0.10611764 -3.09733526
您可以使用tidyr
将其制作成更易于使用的表单
> tidy_tbl <- tbl %>% tidyr::gather(var, x, -y)
> head(tidy_tbl)
y var x
1 -3.54276780 A -1.3430281
2 -0.17595827 A -0.8045598
3 2.71317260 A 0.6432380
4 1.41677569 A 0.9282322
5 -0.02714028 A -0.2104841
6 -5.09970701 A -1.8264372
然后,您可以使用broom
为每个var
组
> library(broom)
> fitted <- tidy_tbl %>%
+ group_by(var) %>%
+ do(model = lm(y ~ x, data = .))
> fitted
Source: local data frame [3 x 2]
Groups: <by row>
# A tibble: 3 x 2
var model
* <chr> <list>
1 A <S3: lm>
2 B <S3: lm>
3 C <S3: lm>
您可以使用tidy
将拟合模型从数据框中的嵌套列表移动到它们的摘要中:
> fitted %>% tidy(model)
# A tibble: 6 x 6
# Groups: var [3]
var term estimate std.error statistic p.value
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 A (Intercept) 0.0744 0.305 0.244 0.814
2 A x 2.46 0.288 8.54 0.0000271
3 B (Intercept) -1.05 0.945 -1.11 0.298
4 B x 0.750 0.891 0.842 0.424
5 C (Intercept) -0.842 0.920 -0.915 0.387
6 C x 0.610 1.26 0.485 0.641
答案 1 :(得分:1)
只使用基数R,可以使用一系列dynamic_rnn
指令完成此操作。
首先,我会编制一些数据,因为你没有发布任何数据。
*apply
现在,回归。
set.seed(7637) # Make the results reproducible
n <- 100
dat <- as.data.frame(replicate(11, rnorm(n)))
names(dat) <- c("Y", paste0("X", 1:10))