PySpark - 创建键值对时丢失字符串值

时间:2018-03-19 10:14:13

标签: apache-spark pyspark rdd

我需要为dataframe / RDD中的每一行创建键值对。也就是说,每个人都将成为每一行的关键,他们的关联交易就是一个成为价值的清单。

我有以下示例来说明我的问题:

a = [
    ('Bob', 562,"Food", "12 May 2018"),
    ('Bob',880,"Food","01 June 2018"),
    ('Bob',380,'Household'," 16 June 2018"),
    ('Sue',85,'Household'," 16 July 2018"),
    ('Sue',963,'Household'," 16 Sept 2018")
] 
df = spark.createDataFrame(a, ["Person", "Amount","Budget", "Date"])

然后,我创建一个函数来为每一行执行键值对

def make_keys_and_value(row):
    """ Convert the dataframe rows into key value pairs

    """
    return (row["Person"], [[row["Amount"], row["Budget"],
                                 row["Date"]]])
person_summarries_rdd = df.rdd.map(lambda row : make_keys_and_value(row))

但是,当我想显示结果时,BudgetDate会变为空。我认为这是因为它们是字符串值。

person_summarries_rdd.toDF().show(5,False)
+---+-------------------------------+
|_1 |_2                             |
+---+-------------------------------+
|Bob|[WrappedArray(562, null, null)]|
|Bob|[WrappedArray(880, null, null)]|
|Bob|[WrappedArray(380, null, null)]|
|Sue|[WrappedArray(85, null, null)] |
|Sue|[WrappedArray(963, null, null)]|
+---+-------------------------------+

我仍然需要在使用此方法时保留字符串的值。

1 个答案:

答案 0 :(得分:1)

无需序列化为rdd。您可以使用pyspark.sql.functions.struct()

import pyspark.sql.function as f
df.withColumn('values', f.struct(f.col('Amount'), f.col('Budget'), f.col('Date')))\
    .select('Person', 'values').show(truncate=False)
#+------+-----------------------------+
#|Person|values                       |
#+------+-----------------------------+
#|Bob   |[562,Food,12 May 2018]       |
#|Bob   |[880,Food,01 June 2018]      |
#|Bob   |[380,Household, 16 June 2018]|
#|Sue   |[85,Household, 16 July 2018] |
#|Sue   |[963,Household, 16 Sept 2018]|
#+------+-----------------------------+

或使用列表理解:

array_columns = [c for c in df.columns if c != 'Person']
df.withColumn('values', f.struct(*[f.col(c) for c in array_columns]))\
    .select('Person', 'values').show(truncate=False)
#+------+-----------------------------+
#|Person|values                       |
#+------+-----------------------------+
#|Bob   |[562,Food,12 May 2018]       |
#|Bob   |[880,Food,01 June 2018]      |
#|Bob   |[380,Household, 16 June 2018]|
#|Sue   |[85,Household, 16 July 2018] |
#|Sue   |[963,Household, 16 Sept 2018]|
#+------+-----------------------------+

您的代码无效,因为您在WrappedArray()中无法使用混合类型。 Spark正在推断第一项(Amount)的类型。

您可以将Amount投射到str

def make_keys_and_value(row):
    """ Convert the dataframe rows into key value pairs

    """
    return (row["Person"], [[str(row["Amount"]), row["Budget"],
                                 row["Date"]]])
person_summarries_rdd = df.rdd.map(lambda row : make_keys_and_value(row))
person_summarries_rdd.toDF().show(truncate=False)
#+---+---------------------------------------------+
#|_1 |_2                                           |
#+---+---------------------------------------------+
#|Bob|[WrappedArray(562, Food, 12 May 2018)]       |
#|Bob|[WrappedArray(880, Food, 01 June 2018)]      |
#|Bob|[WrappedArray(380, Household,  16 June 2018)]|
#|Sue|[WrappedArray(85, Household,  16 July 2018)] |
#|Sue|[WrappedArray(963, Household,  16 Sept 2018)]|
#+---+---------------------------------------------+

或使用tuple代替list

def make_keys_and_value(row):
    """ Convert the dataframe rows into key value pairs

    """
    return (row["Person"], ((row["Amount"]), row["Budget"],
                                 row["Date"]))
person_summarries_rdd = df.rdd.map(lambda row : make_keys_and_value(row))
#+---+-----------------------------+
#|_1 |_2                           |
#+---+-----------------------------+
#|Bob|[562,Food,12 May 2018]       |
#|Bob|[880,Food,01 June 2018]      |
#|Bob|[380,Household, 16 June 2018]|
#|Sue|[85,Household, 16 July 2018] |
#|Sue|[963,Household, 16 Sept 2018]|
#+---+-----------------------------+

我在这里取出了嵌套的[],但如果您希望输出看起来像[[562,Food,12 May 2018]]而不是[562,Food,12 May 2018],则可以轻松地将其重新添加。

另一种选择是使用pyspark.sql.functions.create_map()创建地图:

df.withColumn(
    'values',
    f.create_map(
        *reduce(
            list.__add__,
            [[f.lit(c), f.col(c)] for c in array_columns]
        )
    )
).select('Person', 'values').show(truncate=False)
#+------+--------------------------------------------------------------+
#|Person|values                                                        |
#+------+--------------------------------------------------------------+
#|Bob   |Map(Amount -> 562, Budget -> Food, Date -> 12 May 2018)       |
#|Bob   |Map(Amount -> 880, Budget -> Food, Date -> 01 June 2018)      |
#|Bob   |Map(Amount -> 380, Budget -> Household, Date ->  16 June 2018)|
#|Sue   |Map(Amount -> 85, Budget -> Household, Date ->  16 July 2018) |
#|Sue   |Map(Amount -> 963, Budget -> Household, Date ->  16 Sept 2018)|
#+------+--------------------------------------------------------------+

或者,如果您想直接转到Person->array

的映射
df.withColumn('values', f.struct(*[f.col(c) for c in array_columns]))\
    .withColumn('map',f.create_map(f.col('Person'), f.col('values')))\
    .select('map')\
    .show(truncate=False)
#+-----------------------------------------+
#|map                                      |
#+-----------------------------------------+
#|Map(Bob -> [562,Food,12 May 2018])       |
#|Map(Bob -> [880,Food,01 June 2018])      |
#|Map(Bob -> [380,Household, 16 June 2018])|
#|Map(Sue -> [85,Household, 16 July 2018]) |
#|Map(Sue -> [963,Household, 16 Sept 2018])|
#+-----------------------------------------+