我正在尝试创建一个函数prime-factors
,它返回数字的素数因子。为此,我创建了is-prime
函数和prime-factors-helper
,它将对素数因子进行递归检查。
(defun is-prime (n &optional (d (- n 1)))
(if (/= n 1) (or (= d 1)
(and (/= (rem n d) 0)
(is-prime n (- d 1)))) ()))
(defun prime-factors-helper (x n)
(if (is-prime x)
(list x)
(if (is-prime n)
(if (AND (= (mod x n) 0) (<= n (/ x 2)))
(cons n (prime-factors-helper (/ x n) n))
(prime-factors-helper x (+ 1 n)))
(prime-factors-helper x (+ 1 n)))))
(defun prime-factors (x)
(prime-factors-helper x 2))
问题
我遇到了优化问题。如果我有一个很大的数字,例如123456789
,我会收到此错误消息Stack overflow (stack size 261120)
。我相信,因为正确的答案是(3 3 3607 3803)
,我的程序一旦用第一个元素(3 3)
构造列表,找到下一个素数因子需要很长时间。如何优化我的代码?
CL-USER 53 > (prime-factors 512)
(2 2 2 2 2 2 2 2 2)
CL-USER 54 > (prime-factors 123456789)
Stack overflow (stack size 261120).
1 (abort) Return to level 0.
2 Return to top loop level 0.
Type :b for backtrace or :c <option number> to proceed.
Type :bug-form "<subject>" for a bug report template or :? for other options
答案 0 :(得分:3)
从https://codereview.stackexchange.com/a/189932/20936复制:
您的代码存在一些问题。
is-prime
是C / Java风格。 Lispers使用primep
或prime-number-p
。zerop
比(= 0 ...)
更清晰。 is-prime
是尾递归的,所以如果你编译它,它应该成为一个
简单的循环,应该没有堆栈问题。
但是,不要急着用它。
让我们使用trace
来查看
问题:
> (prime-factors 17)
1. Trace: (IS-PRIME '17)
2. Trace: (IS-PRIME '17 '15)
3. Trace: (IS-PRIME '17 '14)
4. Trace: (IS-PRIME '17 '13)
5. Trace: (IS-PRIME '17 '12)
6. Trace: (IS-PRIME '17 '11)
7. Trace: (IS-PRIME '17 '10)
8. Trace: (IS-PRIME '17 '9)
9. Trace: (IS-PRIME '17 '8)
10. Trace: (IS-PRIME '17 '7)
11. Trace: (IS-PRIME '17 '6)
12. Trace: (IS-PRIME '17 '5)
13. Trace: (IS-PRIME '17 '4)
14. Trace: (IS-PRIME '17 '3)
15. Trace: (IS-PRIME '17 '2)
16. Trace: (IS-PRIME '17 '1)
16. Trace: IS-PRIME ==> T
15. Trace: IS-PRIME ==> T
14. Trace: IS-PRIME ==> T
13. Trace: IS-PRIME ==> T
12. Trace: IS-PRIME ==> T
11. Trace: IS-PRIME ==> T
10. Trace: IS-PRIME ==> T
9. Trace: IS-PRIME ==> T
8. Trace: IS-PRIME ==> T
7. Trace: IS-PRIME ==> T
6. Trace: IS-PRIME ==> T
5. Trace: IS-PRIME ==> T
4. Trace: IS-PRIME ==> T
3. Trace: IS-PRIME ==> T
2. Trace: IS-PRIME ==> T
1. Trace: IS-PRIME ==> T
(17)
当只需要(isqrt 17) = 4
次迭代时,你会进行17次迭代。
现在编译is-prime
以将递归转换为循环并查看:
> (prime-factors 12345)
1. Trace: (IS-PRIME '12345)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '2)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '12345)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '3)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '3)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '4)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '4115)
1. Trace: IS-PRIME ==> NIL
1. Trace: (IS-PRIME '5)
1. Trace: IS-PRIME ==> T
1. Trace: (IS-PRIME '823)
1. Trace: IS-PRIME ==> T
(3 5 823)
您正在多次检查相同数字的素数!
primep
可以找到除数,而不只是检查素数。
(defun compositep (n &optional (d (isqrt n)))
"If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
(and (> n 1)
(> d 1)
(if (zerop (rem n d))
d
(compositep n (- d 1)))))
(defun prime-decomposition (n)
"Return the prime decomposition of n."
(let ((f (compositep n)))
(if f
(nconc (prime-decomposition (/ n f))
(prime-decomposition f))
(list n))))
请注意,最终的优化是可能的 -
memoization
compositep
:
(let ((known-composites (make-hash-table)))
(defun compositep (n &optional (d (isqrt n)))
"If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
(multiple-value-bind (value found-p) (gethash n known-composites)
(if found-p
value
(setf (gethash n known-composites)
(and (> n 1)
(> d 1)
(if (zerop (rem n d))
d
(compositep n (- d 1)))))))))
或者更好的是prime-decomposition
:
(let ((known-decompositions (make-hash-table)))
(defun prime-decomposition (n)
"Return the prime decomposition of n."
(or (gethash n known-decompositions)
(setf (gethash n known-decompositions)
(let ((f (compositep n)))
(if f
(append (prime-decomposition (/ n f))
(prime-decomposition f))
(list n)))))))
请注意使用或append
instead of
nconc
。
另一个有趣的优化是改变迭代
compositep
从下降到上升。
这应该会大大加快它,因为它会提前终止
常:
(let ((known-composites (make-hash-table)))
(defun compositep (n)
"If n is composite, return a divisor.
Assumes n is not divisible by anything over d."
(multiple-value-bind (value found-p) (gethash n known-composites)
(if found-p
value
(setf (gethash n known-composites)
(loop for d from 2 to (isqrt n)
when (zerop (rem n d))
return d))))))