对于Uni的一个项目,我正在使用TensorFlow中的神经网络来实现问题回答(bAbI数据集任务5,参见https://research.fb.com/downloads/babi/)系统,我想使用TFRecords我的输入管道。
我的想法是TFRecords术语中的一个例子应该包括问题的上下文,问题本身,答案和支持句号(int指向上下文中最重要的句子以便能够回答问题)。以下是我定义函数的方法:
def make_example(context, question, answer, support):
ex = tf.train.SequenceExample()
fl_context = ex.feature_lists.feature_list["context"]
fl_question = ex.feature_lists.feature_list["question"]
fl_answer = ex.feature_lists.feature_list["answer"]
ex.context.feature["support"].int64_list.value.append(support)
for token in context:
fl_context.feature.add().int64_list.value.append(token)
for qWord in question:
fl_question.feature.add().int64_list.value.append(qWord)
for ansWord in answer:
fl_answer.feature.add().int64_list.value.append(ansWord)
fl_support.feature.add().int64_list.value.append(support)
return ex
然而,在传递上下文,问题和答案之前,我想嵌入单词并用GloVe向量表示它们,即用(m,d)矩阵表示,其中m是句子中的标记数, d是每个单词矢量具有的维数。我得到的make_example
函数似乎无法很好地处理这个问题:
theTypeError: (array([[ -9.58490000e-01, 1.73210000e-01,
2.51650000e-01,
-5.61450000e-01, -1.21440000e-01, 1.54350000e+00,
-1.28930000e+00, -9.77790000e-01, -1.35480000e-01,
-6.06930000e-01, -1.37810000e+00, 6.33470000e-01,
1.33160000e-01, 2.46320000e-01, 6.60260000e-01,
-4.46130000e-02, 4.09510000e-01, -7.61670000e-01,
4.67530000e-01, -6.67810000e-01, 2.99850000e-01,
-2.74810000e-01, -5.47990000e-01, -8.56820000e-01,
5.30880000e-02, -2.01700000e+00, 7.48530000e-01,
-1.27830000e-01, 1.32050000e-01, -2.19450000e-01,
2.29830000e+00, -3.17680000e-01, -8.64940000e-01,
-1.08630000e-01, -8.13770000e-02, -7.03420000e-01,
4.60000000e-01, -3.34730000e-01, 4.37030000e-02,
-7.55080000e-01, -6.89710000e-01, 7.14380000e-01,
-8.35950000e-02, 1.58620000e-02, -5.23850000e-01,
1.72520000e-01, -4.98740000e-01, 2.30810000e-01,
-3.64690000e-01, 1.5 has type <class 'tuple'>, but expected one of:
(<class 'int'>,)
指向上面的fl_context.feature.add().int64_list.value.append(token)
...有人能指出我误解了TFRecords的概念,并给我一个如何解决问题的建议吗?
我经常搜索学习材料,但通常TFRecords上的例子都是图像数据。到目前为止,我的推荐信是https://medium.com/@TalPerry/getting-text-into-tensorflow-with-the-dataset-api-ffb832c8bec6和http://web.stanford.edu/class/cs20si/lectures/notes_09.pdf。
提前多多感谢!
答案 0 :(得分:0)
我的问题的解决方案可以在这里找到:https://github.com/simonada/q-and-a-tensorflow/blob/master/src/Q%26A%20with%20TF-%20TFRecords%20and%20Eager%20Execution.ipynb
我的方法如下:
将文本存储到csv文件中:每行(上下文,问题,答案)
在我的情况下,定义将序列转换为tf_example的函数
def sequence_to_tf_example(context, question, answer):
context_ids= vectorize(context, False, word_to_index)
question_ids= vectorize(question, False, word_to_index)
answer_ids= vectorize(answer, True, word_to_index)
ex = tf.train.SequenceExample()
context_tokens = ex.feature_lists.feature_list["context"]
question_tokens = ex.feature_lists.feature_list["question"]
answer_tokens = ex.feature_lists.feature_list["answer"]
for token in context_ids:
context_tokens.feature.add().int64_list.value.append(token)
for token in question_ids:
question_tokens.feature.add().int64_list.value.append(token)
for token in answer_ids:
#print(token)
answer_tokens.feature.add().int64_list.value.append(token)
return ex
定义写入功能
def write_example_to_tfrecord(context, question, answer, tfrecord_file, writer):
example= sequence_to_tf_example(context, question, answer)
writer.write(example.SerializeToString())
def write_data_to_tf_record(filename):
file_csv= filename+'.csv'
file_tfrecords= filename+'.tfrecords'
with open(file_csv) as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
next(readCSV) #skip header
writer= tf.python_io.TFRecordWriter(file_tfrecords)
for row in readCSV:
write_example_to_tfrecord(row[0], row[1], row[2], file_tfrecords, writer)
writer.close()
定义读取功能
def read_from_tfrecord(ex):
sequence_features = {
"context": tf.FixedLenSequenceFeature([], dtype=tf.int64),
"question": tf.FixedLenSequenceFeature([], dtype=tf.int64),
"answer": tf.FixedLenSequenceFeature([], dtype=tf.int64)
}
# Parse the example (returns a dictionary of tensors)
_, sequence_parsed = tf.parse_single_sequence_example(
serialized=ex,
sequence_features=sequence_features
)
return {"context": sequence_parsed['context'], "question": sequence_parsed['question'],
"answer": sequence_parsed['answer']}
创建数据集
def make_dataset(path, batch_size=128):
'''
Makes a Tensorflow dataset that is shuffled, batched and parsed.
'''
# Read a tf record file. This makes a dataset of raw TFRecords
dataset = tf.data.TFRecordDataset([path])
# Apply/map the parse function to every record. Now the dataset is a bunch of dictionaries of Tensors
dataset = dataset.map(read_from_tfrecord)
#Shuffle the dataset
dataset = dataset.shuffle(buffer_size=10000)
# specify padding for each tensor seperatly
dataset = dataset.padded_batch(batch_size, padded_shapes={
"context": tf.TensorShape([None]),
"question": tf.TensorShape([None]),
"answer": tf.TensorShape([None])
})
return dataset