假设我在Spark Scala中有以下数据框:
+--------+--------------------+--------------------+
|Index | Date| Date_x|
+--------+--------------------+--------------------+
| 1|2018-01-31T20:33:...|2018-01-31T21:18:...|
| 1|2018-01-31T20:35:...|2018-01-31T21:18:...|
| 1|2018-01-31T21:04:...|2018-01-31T21:18:...|
| 1|2018-01-31T21:05:...|2018-01-31T21:18:...|
| 1|2018-01-31T21:15:...|2018-01-31T21:18:...|
| 1|2018-01-31T21:16:...|2018-01-31T21:18:...|
| 1|2018-01-31T21:19:...|2018-01-31T21:18:...|
| 1|2018-01-31T21:20:...|2018-01-31T21:18:...|
| 2|2018-01-31T19:43:...|2018-01-31T20:35:...|
| 2|2018-01-31T19:44:...|2018-01-31T20:35:...|
| 2|2018-01-31T20:36:...|2018-01-31T20:35:...|
+--------+--------------------+--------------------+
我想删除每个索引Date < Date_x
的行,如下所示:
+--------+--------------------+--------------------+
|Index | Date| Date_x|
+--------+--------------------+--------------------+
| 1|2018-01-31T21:19:...|2018-01-31T21:18:...|
| 1|2018-01-31T21:20:...|2018-01-31T21:18:...|
| 2|2018-01-31T20:36:...|2018-01-31T20:35:...|
+--------+--------------------+--------------------+
我尝试使用x_idx
添加列monotonically_increasing_id()
,并为每个min(x_idx)
Index
获取Date < Date_x
。这样我随后可以从不满足条件的数据框中删除行。但它似乎并不适合我。我可能会错过对agg()
如何运作的理解。谢谢你的帮助!
val test_df = df.withColumn("x_idx", monotonically_increasing_id())
val newIdx = test_df
.filter($"Date" > "Date_x")
.groupBy($"Index")
.agg(min($"x_idx"))
.toDF("n_Index", "min_x_idx")
newIdx.show
+-------+--------+
|n_Index|min_x_idx|
+-------+--------+
+-------+--------+
答案 0 :(得分:1)
您忘了在
中添加$
.filter($"Date" > "Date_x")
所以正确的filter
是
.filter($"Date" > $"Date_x")
您可以使用alias
代替将toDF
称为
val newIdx = test_df
.filter($"Date" > $"Date_x")
.groupBy($"Index".as("n_Index"))
.agg(min($"x_idx").as("min_x_idx"))
你应该输出
+-------+---------+
|n_Index|min_x_idx|
+-------+---------+
|1 |6 |
|2 |10 |
+-------+---------+
答案 1 :(得分:0)
过滤条件可能会过滤所有记录。请检查在过滤记录后打印数据帧,并确保过滤器按预期工作。
val newIdx = test_df
.filter($"Date" > $"Date_x")
.show