我正在尝试递归数据集以找到最高级别的项目,即没有父项目的项目。
结构如下:
╔════════════╦════════════╗
║ Item ║ Material ║
╠════════════╬════════════╣
║ 2094-00003 ║ MHY00007 ║
║ 2105-0001 ║ 2105-0002 ║
║ 2105-0002 ║ 2105-1000 ║
║ 2105-1000 ║ 2105-1003 ║
║ 2105-1003 ║ 7547-122 ║
║ 7932-00001 ║ 7932-00015 ║
║ 7932-00002 ║ 7932-00015 ║
║ 7932-00010 ║ MHY00007 ║
║ 7932-00015 ║ 7932-05000 ║
║ 7932-05000 ║ MHY00007 ║
╚════════════╩════════════╝
因此,例如,如果我选择7547-122,该函数将返回2105-0001。因此该函数递归地跟随树向上,7547-122 - > 2105-1003 - > 2105-1000 - > ... - > 2105-0001。
当我运行我的代码时,我只能让它返回一个顶层,正如你从MHY00007案例中看到的那样,有时会有多个顶层。如何返回任何给定材料的所有顶级列表?
我的代码:
import pandas as pd
class BillOfMaterials:
def __init__(self, bom_excel_path):
self.df = pd.read_excel(bom_excel_path)
self.df = self.df[['Item', 'Material']]
def find_parents(self, part_number):
material_parent_search = self.df[self.df.Material == part_number]
parents = list(set(material_parent_search['Item']))
return parents
def find_top_levels(self, parents):
top_levels = self.__ancestor_finder_([parents])
print(f'{parents} top level is {top_levels}')
return {parents: top_levels}
def __ancestor_finder_(self, list_of_items):
for ancestor in list_of_items:
print(f'Searching for ancestors of {ancestor}')
ancestors = self.find_parents(ancestor)
print(f'{ancestor} has ancestor(s) {ancestors}')
if not ancestors:
return ancestor
else:
highest_level = self.__ancestor_finder_(ancestors)
return highest_level
BOM = BillOfMaterials(bom_excel_path="Path/To/Excel/File/BOM.xlsx")
ItemsToSearch = ['7547-122', 'MHY00007']
top_levels = []
for item in ItemsToSearch:
top_levels.append(BOM.find_top_levels(item))
答案 0 :(得分:2)
是的,您可以递归执行此操作,例如:
import pandas as pd
class BillOfMaterials:
def __init__(self, bom_excel_path):
self.df = pd.read_excel(bom_excel_path)
self.df = self.df[['Item', 'Material']]
def find_parents(self, part_number):
return list(set(self.df[self.df.Material == part_number]['Item']))
def find_top_levels(self, item):
parents = self.find_parents(item)
if not parents:
# there are no parent items => this item is a leaf
return [item]
else:
# there are parent items => recursively find grandparents
grandparents = []
for parent in parents:
grandparents = grandparents + self.find_top_levels(parent)
return grandparents
if __name__ == '__main__':
BOM = BillOfMaterials(bom_excel_path="testdata.xlsx")
ItemsToSearch = ['7547-122', 'MHY00007']
for i in ItemsToSearch:
print('')
print('The top levels of ' + i + ' are: ')
print(BOM.find_top_levels(i))
请注意self.find_top_levels(parent)
的递归调用。
这将给出输出
The top levels of 7547-122 are:
['2105-0001']
The top levels of MHY00007 are:
['2094-00003', '7932-00001', '7932-00002', '7932-00010']
答案 1 :(得分:1)
pandas
数据框的递归速度比使用dict
慢。
为了提高性能,我建议您创建一个字典并创建一个简单的函数来迭代循环树结构。以下是一个例子。
import pandas as pd
df = pd.DataFrame({'Item': ['2094-00003', '2105-0001', '2105-0002', '2105-1000',
'2105-1003', '7932-00001', '7932-00002', '7932-00010',
'7932-00015', '7932-05000'],
'Material': ['MHY00007', '2105-0002', '2105-1000', '2105-1003',
'7547-122', '7932-00015', '7932-00015', 'MHY00007',
'7932-05000', 'MHY00007']})
parent_child = df.set_index('Item')['Material'].to_dict()
child_parent = {v: k for k, v in parent_child.items()}
def get_all_parents(x):
while x in child_parent:
x = child_parent[x]
yield x
def get_grand_parent(x):
for last in get_all_parents(x):
pass
return last
get_grand_parent('7547-122')
# '2105-0001'