子类化pandas.plotting._core.PlanePlot会导致ValueError

时间:2018-03-16 17:32:12

标签: python pandas matplotlib plot subclass

背景

我尝试将自己的绘图方法添加到下面示例中的pandas.DataFrame.plot我已经从pandas复制并粘贴ScatterPlot并将名称更改为VscatterPlot }。然后,我已将该课程及其corresponding helper function pandas.DataFrame.plot添加到VscatterPlot各自的职位(见下文)。

示例类import pandas import numpy as np class VscatterPlot(pandas.plotting._core.PlanePlot): _kind = 'vscatter' def __init__(self, data, x, y, s=None, c=None, **kwargs): if s is None: # hide the matplotlib default for size, in case we want to change # the handling of this argument later s = 20 super(VscatterPlot, self).__init__(data, x, y, s=s, **kwargs) if is_integer(c) and not self.data.columns.holds_integer(): c = self.data.columns[c] self.c = c def _make_plot(self): x, y, c, data = self.x, self.y, self.c, self.data ax = self.axes[0] c_is_column = is_hashable(c) and c in self.data.columns # plot a colorbar only if a colormap is provided or necessary cb = self.kwds.pop('colorbar', self.colormap or c_is_column) # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or 'Greys' cmap = self.plt.cm.get_cmap(cmap) color = self.kwds.pop("color", None) if c is not None and color is not None: raise TypeError('Specify exactly one of `c` and `color`') elif c is None and color is None: c_values = self.plt.rcParams['patch.facecolor'] elif color is not None: c_values = color elif c_is_column: c_values = self.data[c].values else: c_values = c if self.legend and hasattr(self, 'label'): label = self.label else: label = None scatter = ax.scatter(data[x].values, data[y].values, c=c_values, label=label, cmap=cmap, **self.kwds) if cb: img = ax.collections[0] kws = dict(ax=ax) if self.mpl_ge_1_3_1(): kws['label'] = c if c_is_column else '' self.fig.colorbar(img, **kws) if label is not None: self._add_legend_handle(scatter, label) else: self.legend = False errors_x = self._get_errorbars(label=x, index=0, yerr=False) errors_y = self._get_errorbars(label=y, index=0, xerr=False) if len(errors_x) > 0 or len(errors_y) > 0: err_kwds = dict(errors_x, **errors_y) err_kwds['ecolor'] = scatter.get_facecolor()[0] ax.errorbar(data[x].values, data[y].values, linestyle='none', **err_kwds)

# Set VscatterPlot as an attribute of pandas.plotting._core
setattr(pandas.plotting._core, "VscatterPlot", VscatterPlot)

# Create the vscatter helper function
def vscatter(self, x, y, s=None, c=None, **kwds):
    return self(kind='vscatter', x=x, y=y, c=c, s=s, **kwds)

# Set the helper function
setattr(pandas.plotting._core.FramePlotMethods, "vscatter", vscatter)

# Append the class to pandas.plotting._core._klasses
pandas.plotting._core._klasses.append(pandas.plotting._core.VscatterPlot)

# Add the class to the pandas.plotting._core._plot_klass dict
pandas.plotting._core._plot_klass[VscatterPlot._kind] = pandas.plotting._core.VscatterPlot

修改pandas.plotting._core

example = pandas.DataFrame(np.random.random((5,2)), columns=["x", "y"])
example.plot.vscatter(x="x", y="y")

测试

ValueError: 'vscatter' is not a valid plot kind

输出

vscatter

问题

我在这里缺少什么? pandas.plotting._core._plot_klass位于import * as actions1 from './actionCreators1' import * as actions2 from './actionCreators2' export default { ...actions1, ...actions2 } ,为什么会抛出此ValueError?

1 个答案:

答案 0 :(得分:1)

pandas.plotting._core中有两个列表确定如何实例化类。您需要将"vscatter"放在这些列表中。

pandas.plotting._core._dataframe_kinds.append("vscatter")
pandas.plotting._core._all_kinds.append("vscatter")

除了一些进口缺失。以下代码

import matplotlib.pyplot as plt
import pandas
import numpy as np
from pandas.core.dtypes.common import is_integer, is_hashable


class VscatterPlot(pandas.plotting._core.PlanePlot):
    _kind = 'vscatter'

    def __init__(self, data, x, y, s=None, c=None, **kwargs):
        if s is None:
            # hide the matplotlib default for size, in case we want to change
            # the handling of this argument later
            s = 20

        super(VscatterPlot, self).__init__(data, x, y, s=s, **kwargs)

        if is_integer(c) and not self.data.columns.holds_integer():
            c = self.data.columns[c]

        self.c = c

    def _make_plot(self):
        x, y, c, data = self.x, self.y, self.c, self.data
        ax = self.axes[0]

        c_is_column = is_hashable(c) and c in self.data.columns

        # plot a colorbar only if a colormap is provided or necessary
        cb = self.kwds.pop('colorbar', self.colormap or c_is_column)

        # pandas uses colormap, matplotlib uses cmap.
        cmap = self.colormap or 'Greys'
        cmap = self.plt.cm.get_cmap(cmap)
        color = self.kwds.pop("color", None)

        if c is not None and color is not None:
            raise TypeError('Specify exactly one of `c` and `color`')

        elif c is None and color is None:
            c_values = self.plt.rcParams['patch.facecolor']

        elif color is not None:
            c_values = color

        elif c_is_column:
            c_values = self.data[c].values

        else:
            c_values = c

        if self.legend and hasattr(self, 'label'):
            label = self.label

        else:
            label = None

        scatter = ax.scatter(data[x].values, data[y].values, c=c_values,
                             label=label, cmap=cmap, **self.kwds)

        if cb:
            img = ax.collections[0]
            kws = dict(ax=ax)
            if self.mpl_ge_1_3_1():
                kws['label'] = c if c_is_column else ''
            self.fig.colorbar(img, **kws)

        if label is not None:
            self._add_legend_handle(scatter, label)

        else:
            self.legend = False

        errors_x = self._get_errorbars(label=x, index=0, yerr=False)
        errors_y = self._get_errorbars(label=y, index=0, xerr=False)

        if len(errors_x) > 0 or len(errors_y) > 0:
            err_kwds = dict(errors_x, **errors_y)
            err_kwds['ecolor'] = scatter.get_facecolor()[0]
            ax.errorbar(data[x].values, data[y].values,
                        linestyle='none', **err_kwds)

#Amending the pandas.plotting._core
# Set VscatterPlot as an attribute of pandas.plotting._core
setattr(pandas.plotting._core, "VscatterPlot", VscatterPlot)

# Create the vscatter helper function
def vscatter(self, x, y, s=None, c=None, **kwds):
    return self(kind='vscatter', x=x, y=y, c=c, s=s, **kwds)

# Set the helper function
setattr(pandas.plotting._core.FramePlotMethods, "vscatter", vscatter)

# Append the class to pandas.plotting._core._klasses
pandas.plotting._core._klasses.append(pandas.plotting._core.VscatterPlot)

# Add the class to the pandas.plotting._core._plot_klass dict
pandas.plotting._core._plot_klass[VscatterPlot._kind] = pandas.plotting._core.VscatterPlot

pandas.plotting._core._dataframe_kinds.append("vscatter")
pandas.plotting._core._all_kinds.append("vscatter")
#Testing
example = pandas.DataFrame(np.random.random((5,2)), columns=["x", "y"])
example.plot.vscatter(x="x", y="y")

plt.show()

产生此输出

enter image description here