我的数据帧如下:
StationID DateTime Channel Count
0 1 2017-10-01 00:00:00 1 1
1 1 2017-10-01 00:00:00 1 201
2 1 2017-10-01 00:00:00 1 8
3 1 2017-10-01 00:00:00 1 2
4 1 2017-10-01 00:00:00 1 0
5 1 2017-10-01 00:00:00 1 0
6 1 2017-10-01 00:00:00 1 0
7 1 2017-10-01 00:00:00 1 0
..........等等 我想按每小时和每个频道和StationID分组值。
输出要求
Station ID DateTime Channel Count
1 2017-10-01 00:00:00 1 232
1 2017-10-01 00:01:00 1 23
2 2017-10-01 00:00:00 1 244...
......等等
答案 0 :(得分:1)
我认为您需要groupby
使用汇总sum
,datetime
s需要hour
添加floor
- 它设置为minute
s和second
到0
:
print (df)
StationID DateTime Channel Count
0 1 2017-12-01 00:00:00 1 1
1 1 2017-12-01 00:00:00 1 201
2 1 2017-12-01 00:10:00 1 8
3 1 2017-12-01 10:00:00 1 2
4 1 2017-10-01 10:50:00 1 0
5 1 2017-10-01 10:20:00 1 5
6 1 2017-10-01 08:10:00 1 4
7 1 2017-10-01 08:00:00 1 1
df['DateTime'] = pd.to_datetime(df['DateTime'])
df1 = (df.groupby(['StationID', df['DateTime'].dt.floor('H'), 'Channel'])['Count']
.sum()
.reset_index()
)
print (df1)
StationID DateTime Channel Count
0 1 2017-10-01 08:00:00 1 5
1 1 2017-10-01 10:00:00 1 5
2 1 2017-12-01 00:00:00 1 210
3 1 2017-12-01 10:00:00 1 2
print (df['DateTime'].dt.floor('H'))
0 2017-12-01 00:00:00
1 2017-12-01 00:00:00
2 2017-12-01 00:00:00
3 2017-12-01 10:00:00
4 2017-10-01 10:00:00
5 2017-10-01 10:00:00
6 2017-10-01 08:00:00
7 2017-10-01 08:00:00
Name: DateTime, dtype: datetime64[ns]
但是如果日期不重要,只需要几个小时就可以使用hour
:
df2 = (df.groupby(['StationID', df['DateTime'].dt.hour, 'Channel'])['Count']
.sum()
.reset_index()
)
print (df2)
StationID DateTime Channel Count
0 1 0 1 210
1 1 8 1 5
2 1 10 1 7
答案 1 :(得分:0)
或者您可以使用Grouper
:
df.groupby(pd.Grouper(key='DateTime', freq='"H'), 'Channel', 'StationID')['Count'].sum()