在Keras中编写我的第一个图像分类器,这是代码
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
# dimensions of our images.
img_width, img_height = 150, 150
train_data_dir = 'training_images'
validation_data_dir = 'validation_images'
nb_train_samples = 2000
nb_validation_samples = 800
epochs = 50
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(5))
model.add(Dense(14951, activation='softmax'))
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3, patience=5, verbose=0, mode='auto')
checkpointer = ModelCheckpoint(filepath="best_weights.hdf5", verbose=0, save_best_only=True) # save best model
model.compile(loss='categorical_crossentropy', optimizer='adam', callbacks=[monitor,checkpointer], epochs=1000, metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model.load_weights('best_weights.hdf5') # load weights from best model
model.save('last_model.h5')
当我尝试训练模型时,虽然我遇到了形状错误
Using TensorFlow backend.
Found 981214 images belonging to 14951 classes.
Found 237925 images belonging to 14951 classes.
Epoch 1/50
Traceback (most recent call last):
File "train.py", line 78, in <module>
validation_steps=nb_validation_samples // batch_size)
File "/home/muiruri_samuel/.local/lib/python2.7/site-packages/keras/legacy/interfaces.py", line 91, in wra
pper
return func(*args, **kwargs)
File "/home/muiruri_samuel/.local/lib/python2.7/site-packages/keras/models.py", line 1276, in fit_generato
r
initial_epoch=initial_epoch)
File "/home/muiruri_samuel/.local/lib/python2.7/site-packages/keras/legacy/interfaces.py", line 91, in wra
pper
return func(*args, **kwargs)
File "/home/muiruri_samuel/.local/lib/python2.7/site-packages/keras/engine/training.py", line 2224, in fit
_generator
class_weight=class_weight)
File "/home/muiruri_samuel/.local/lib/python2.7/site-packages/keras/engine/training.py", line 1877, in tra
in_on_batch
class_weight=class_weight)
File "/home/muiruri_samuel/.local/lib/python2.7/site-packages/keras/engine/training.py", line 1480, in _st
andardize_user_data
exception_prefix='target')
File "/home/muiruri_samuel/.local/lib/python2.7/site-packages/keras/engine/training.py", line 123, in _sta
ndardize_input_data
str(data_shape))
ValueError: Error when checking target: expected dense_3 to have shape (14951,) but got array with shape (1,
)
这是我第一次遇到形状错误。 我已经找到了我可能犯错误的地方,但由于这个模型是基于二元“圣诞老人”或“非圣诞老人”,我可能怀疑我应该给它最终给出的类别形状。 / p>
答案 0 :(得分:0)
我认为主要问题在于:
msg_control
由于您有14951个类,根本不是二进制分类,您将类模式设置为&#34; binary&#34;。这应该设置为&#34;分类&#34;:
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
然后由发电机产生的标签将具有正确的形状,并且训练应该起作用。