如何处理Tensorflow中的许多列

时间:2018-03-14 22:01:26

标签: tensorflow

我正在研究Tensorflow,我有一个问题。 原始代码是

Columns = ['size' , 'room', 'price']
x1 = tf.Variable(np.array(columns['size']).astype(np.float32))
x2 = tf.Variable(np.array(columns['room']).astype(np.float32))
y = tf.Variable(np.array(columns['price']).astype(np.float32))enter code here

train_X1 = np.asarray([i[1] for i in data.loc[:,['size']].to_records()],dtype="float")
train_X2 = np.asarray([i[1] for i in data.loc[:,['room']].to_records()],dtype="float")
train_X = np.asarray([i[1] for i in data.loc[:,'size':'room'].to_records()],dtype="float")
train_Y = np.asarray([i[1] for i in data.loc[:,['price']].to_records()],dtype="float")
n_samples = train_X.shape[0]

X1 = tf.placeholder("float")
X2 = tf.placeholder("float")
Y = tf.placeholder("float")

W1 = tf.Variable(rng.randn(), name="weight1")
W2 = tf.Variable(rng.randn(), name="weight2")
b = tf.Variable(rng.randn(), name="bias")

sum_list = [tf.multiply(X1,W1),tf.multiply(X2,W2)] 
pred_X = tf.add_n(sum_list)
pred = tf.add(pred_X,b)

cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

如果我有很多这样的列

Columns = ['price','lotsize','bedrooms','bathrms', 'stories', 'garagepl', 'driveway', 'recroom', \
'fullbase', 'gashw', 'airco', 'prefarea']

我如何处理Tensorflow中的许多列? (自变量='价格',因变量=其他)

我是否必须使用列制作每个train_set和W?

0 个答案:

没有答案