我在图表的一个部分创建了一个变量作用域,稍后在图形的另一部分我想要将OP添加到现有作用域。这相当于这个蒸馏的例子:
import tensorflow as tf
with tf.variable_scope('myscope'):
tf.Variable(1.0, name='var1')
with tf.variable_scope('myscope', reuse=True):
tf.Variable(2.0, name='var2')
print([n.name for n in tf.get_default_graph().as_graph_def().node])
哪个收益率:
['myscope/var1/initial_value',
'myscope/var1',
'myscope/var1/Assign',
'myscope/var1/read',
'myscope_1/var2/initial_value',
'myscope_1/var2',
'myscope_1/var2/Assign',
'myscope_1/var2/read']
我想要的结果是:
['myscope/var1/initial_value',
'myscope/var1',
'myscope/var1/Assign',
'myscope/var1/read',
'myscope/var2/initial_value',
'myscope/var2',
'myscope/var2/Assign',
'myscope/var2/read']
我看到这个问题似乎没有直接解决问题的答案:TensorFlow, how to reuse a variable scope name
答案 0 :(得分:3)
以下是在上下文管理器中使用as
和somename
执行此操作的简单方法。使用此somename.original_name_scope
属性,您可以检索该范围,然后向其中添加更多变量。以下是插图:
In [6]: with tf.variable_scope('myscope') as ms1:
...: tf.Variable(1.0, name='var1')
...:
...: with tf.variable_scope(ms1.original_name_scope) as ms2:
...: tf.Variable(2.0, name='var2')
...:
...: print([n.name for n in tf.get_default_graph().as_graph_def().node])
...:
['myscope/var1/initial_value',
'myscope/var1',
'myscope/var1/Assign',
'myscope/var1/read',
'myscope/var2/initial_value',
'myscope/var2',
'myscope/var2/Assign',
'myscope/var2/read']
<强>备注强>
另请注意,设置reuse=True
是可选的;也就是说,即使您通过reuse=True
,您仍然会得到相同的结果。
另一种方式(感谢OP本人!)只是在重用时在变量范围的末尾添加/
,如下例所示:
In [13]: with tf.variable_scope('myscope'):
...: tf.Variable(1.0, name='var1')
...:
...: # reuse variable scope by appending `/` to the target variable scope
...: with tf.variable_scope('myscope/', reuse=True):
...: tf.Variable(2.0, name='var2')
...:
...: print([n.name for n in tf.get_default_graph().as_graph_def().node])
...:
['myscope/var1/initial_value',
'myscope/var1',
'myscope/var1/Assign',
'myscope/var1/read',
'myscope/var2/initial_value',
'myscope/var2',
'myscope/var2/Assign',
'myscope/var2/read']
<强>备注强>:
请注意,设置reuse=True
也是可选的;也就是说,即使您通过reuse=True
,您仍然会得到相同的结果。
答案 1 :(得分:0)
kmario23提到的答案是正确的,但在tf.get_variable
创建的变量中存在一个棘手的情况:
with tf.variable_scope('myscope'):
print(tf.get_variable('var1', shape=[3]))
with tf.variable_scope('myscope/'):
print(tf.get_variable('var2', shape=[3]))
此代码段将输出:
<tf.Variable 'myscope/var1:0' shape=(3,) dtype=float32_ref>
<tf.Variable 'myscope//var2:0' shape=(3,) dtype=float32_ref>
看来tensorflow
尚未提供处理这种情况的正式方法。我发现的唯一可能的方法是手动分配正确的名称(警告:不能保证正确性):
with tf.variable_scope('myscope'):
print(tf.get_variable('var1', shape=[3]))
with tf.variable_scope('myscope/') as scope:
scope._name = 'myscope'
print(tf.get_variable('var2', shape=[3]))
然后我们可以获得正确的名称:
<tf.Variable 'myscope/var1:0' shape=(3,) dtype=float32_ref>
<tf.Variable 'myscope/var2:0' shape=(3,) dtype=float32_ref>