我在Python脚本中有一个函数,我多次调用它(https://github.com/sankhaMukherjee/NNoptExpt/blob/dev/src/lib/NNlib/NNmodel.py):我已经为这个例子显着简化了函数。
def errorValW(self, X, y, weights):
errVal = None
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
nW = len(self.allW)
W = weights[:nW]
B = weights[nW:]
for i in range(len(W)):
sess.run(tf.assign( self.allW[i], W[i] ))
for i in range(len(B)):
sess.run(tf.assign( self.allB[i], B[i] ))
errVal = sess.run(self.err,
feed_dict = {self.Inp: X, self.Op: y})
return errVal
我从另一个函数多次调用此函数。当我看到程序日志时,似乎此功能持续时间越来越长。显示部分日志:
21:37:12,634 - ... .errorValW ... - Finished the function [errorValW] in 1.477610e+00 seconds
21:37:14,116 - ... .errorValW ... - Finished the function [errorValW] in 1.481470e+00 seconds
21:37:15,608 - ... .errorValW ... - Finished the function [errorValW] in 1.490914e+00 seconds
21:37:17,113 - ... .errorValW ... - Finished the function [errorValW] in 1.504651e+00 seconds
21:37:18,557 - ... .errorValW ... - Finished the function [errorValW] in 1.443876e+00 seconds
21:37:20,183 - ... .errorValW ... - Finished the function [errorValW] in 1.625608e+00 seconds
21:37:21,719 - ... .errorValW ... - Finished the function [errorValW] in 1.534915e+00 seconds
... many lines later
22:59:26,524 - ... .errorValW ... - Finished the function [errorValW] in 9.576592e+00 seconds
22:59:35,991 - ... .errorValW ... - Finished the function [errorValW] in 9.466405e+00 seconds
22:59:45,708 - ... .errorValW ... - Finished the function [errorValW] in 9.716456e+00 seconds
22:59:54,991 - ... .errorValW ... - Finished the function [errorValW] in 9.282923e+00 seconds
23:00:04,407 - ... .errorValW ... - Finished the function [errorValW] in 9.415035e+00 seconds
有没有其他人经历过这样的事情?这让我感到困惑......
修改:这仅供参考......
作为参考,该类的初始化程序如下所示。我怀疑result
变量的图表的大小正在逐渐增加。当我尝试使用tf.train.Saver(tf.trainable_variables())
保存模型时,我已经看到了这个问题,并且此文件的大小不断增加。我不确定我是否在以任何方式定义模型时犯了错误......
def __init__(self, inpSize, opSize, layers, activations):
self.inpSize = inpSize
self.Inp = tf.placeholder(dtype=tf.float32, shape=inpSize, name='Inp')
self.Op = tf.placeholder(dtype=tf.float32, shape=opSize, name='Op')
self.allW = []
self.allB = []
self.result = None
prevSize = inpSize[0]
for i, l in enumerate(layers):
tempW = tf.Variable( 0.1*(np.random.rand(l, prevSize) - 0.5), dtype=tf.float32, name='W_{}'.format(i) )
tempB = tf.Variable( 0, dtype=tf.float32, name='B_{}'.format(i) )
self.allW.append( tempW )
self.allB.append( tempB )
if i == 0:
self.result = tf.matmul( tempW, self.Inp ) + tempB
else:
self.result = tf.matmul( tempW, self.result ) + tempB
prevSize = l
if activations[i] is not None:
self.result = activations[i]( self.result )
self.err = tf.sqrt(tf.reduce_mean((self.Op - self.result)**2))
return
答案 0 :(得分:3)
您正在会话上下文中调用tf.assign
。每次执行errorValW
函数时,这将继续向您的图表添加操作,从而在图表变大时减慢执行速度。根据经验,在数据上执行模型时应避免调用Tensorflow操作(因为这通常在循环内部,导致图形不断增长)。根据我的个人经验,即使您只是添加了一些"在执行期间操作会导致极度放缓。
请注意,tf.assign
与其他任何操作一样。您应该事先定义一次(创建模型/构建图形时),然后在启动会话后重复运行相同的操作。
我不知道您在代码段中想要实现的目标,但请考虑以下因素:
...
with tf.Session() as sess:
sess.run(tf.assign(some_var, a_value))
可以替换为
a_placeholder = tf.placeholder(type_for_a_value, shape_for_a_value)
assign_op = tf.assign(some_var, a_placeholder)
...
with tf.Session() as sess:
sess.run(assign_op, feed_dict={a_placeholder: a_value})
其中a_placeholder
应与some_var
具有相同的dtype /形状。我不得不承认我还没有测试过这个片段,所以如果有问题请告诉我,但这应该是正确的。