这似乎与
有关How to change hdfs block size in pyspark?
我可以使用rdd.saveAsTextFile成功更改hdfs块大小, 但不是相应的DataFrame.write.parquet,也无法用拼花格式保存。
不确定它是否是pyspark DataFrame中的错误,或者我没有正确设置配置。
以下是我的测试代码:
##########
# init
##########
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import hdfs
from hdfs import InsecureClient
import os
import numpy as np
import pandas as pd
import logging
os.environ['SPARK_HOME'] = '/opt/spark-2.2.1-bin-hadoop2.7'
block_size = 512 * 1024
conf = SparkConf().setAppName("myapp").setMaster("spark://spark1:7077").set('spark.cores.max', 20).set("spark.executor.cores", 10).set("spark.executor.memory", "10g").set("spark.hadoop.dfs.blocksize", str(block_size)).set("spark.hadoop.dfs.block.size", str(block_size))
spark = SparkSession.builder.config(conf=conf).getOrCreate()
spark.sparkContext._jsc.hadoopConfiguration().setInt("dfs.blocksize", block_size)
spark.sparkContext._jsc.hadoopConfiguration().setInt("dfs.block.size", block_size)
##########
# main
##########
# create DataFrame
df_txt = spark.createDataFrame([\{'temp': "hello"}, \{'temp': "world"}, \{'temp': "!"}])
# save using DataFrameWriter, resulting 128MB-block-size
df_txt.write.mode('overwrite').format('parquet').save('hdfs://spark1/tmp/temp_with_df')
# save using rdd, resulting 512k-block-size
client = InsecureClient('http://spark1:50070')
client.delete('/tmp/temp_with_rrd', recursive=True)
df_txt.rdd.saveAsTextFile('hdfs://spark1/tmp/temp_with_rrd')
答案 0 :(得分:0)
Hadoop和Spark是两个独立的工具,它们有自己的工作策略。 Spark和Parquet使用数据分区和块大小对它们没有意义。按照Spark的说法做什么,然后在HDFS中用它做你想做的事。
您可以通过
更改Parquet分区编号df_txt.repartition(6).format("parquet").save("hdfs://...")
答案 1 :(得分:0)
从以下链接找到答案:
https://forums.databricks.com/questions/918/how-to-set-size-of-parquet-output-files.html
我可以使用spark.hadoop.parquet.block.size
成功设置镶木地板块尺寸以下是示例代码:
# init
block_size = 512 * 1024
conf = SparkConf().setAppName("myapp").setMaster("spark://spark1:7077").set('spark.cores.max', 20).set("spark.executor.cores", 10).set("spark.executor.memory", "10g").set('spark.hadoop.parquet.block.size', str(block_size)).set("spark.hadoop.dfs.blocksize", str(block_size)).set("spark.hadoop.dfs.block.size", str(block_size)).set("spark.hadoop.dfs.namenode.fs-limits.min-block-size", str(131072))
sc = SparkContext(conf=conf)
spark = SparkSession(sc)
# create DataFrame
df_txt = spark.createDataFrame([{'temp': "hello"}, {'temp': "world"}, {'temp': "!"}])
# save using DataFrameWriter, resulting 512k-block-size
df_txt.write.mode('overwrite')。format('parquet')。save('hdfs:// spark1 / tmp / temp_with_df')
# save using DataFrameWriter.csv, resulting 512k-block-size
df_txt.write.mode('overwrite').csv('hdfs://spark1/tmp/temp_with_df_csv')
# save using DataFrameWriter.text, resulting 512k-block-size
df_txt.write.mode('overwrite')。text('hdfs:// spark1 / tmp / temp_with_df_text')
# save using rdd, resulting 512k-block-size
client = InsecureClient('http://spark1:50070')
client.delete('/tmp/temp_with_rrd', recursive=True)
df_txt.rdd.saveAsTextFile('hdfs://spark1/tmp/temp_with_rrd')