在以下单元测试用例中,生成 numberOfElements 指定的某些事件并将其作为数据流提供。该单位案件在该行随机失败。
assertEquals(numberOfElements,CollectSink.values.size());
解释为什么Apache Flink正在跳过事件。
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.junit.Before;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
import static java.lang.Thread.sleep;
import static org.junit.Assert.assertEquals;
public class FlinkTest {
StreamExecutionEnvironment env;
@Before
public void setup() {
env = StreamExecutionEnvironment.createLocalEnvironment();
}
@Test
public void testStream1() throws Exception {
testStream();
}
@Test
public void testStream2() throws Exception {
testStream();
}
@Test
public void testStream3() throws Exception {
testStream();
}
@Test
public void testStream4() throws Exception {
testStream();
}
@Test
public void testStream() throws Exception {
final int numberOfElements = 50;
DataStream<Tuple2<String, Integer>> tupleStream = env.fromCollection(getCollectionOfBucketImps(numberOfElements));
CollectSink.values.clear();
tupleStream.addSink(new CollectSink());
env.execute();
sleep(2000);
assertEquals(numberOfElements, getCollectionOfBucketImps(numberOfElements).size());
assertEquals(numberOfElements, CollectSink.values.size());
}
public static List<Tuple2<String, Integer>> getCollectionOfBucketImps(int numberOfElements) throws InterruptedException {
List<Tuple2<String, Integer>> records = new ArrayList<>();
for (int i = 0; i < numberOfElements; i++) {
records.add(new Tuple2<>(Integer.toString(i % 10), i));
}
return records;
}
// create a testing sink
private static class CollectSink implements SinkFunction<Tuple2<String, Integer>> {
public static final List<Tuple2<String, Integer>> values = new ArrayList<>();
@Override
public synchronized void invoke(Tuple2<String, Integer> value, Context context) throws Exception {
values.add(value);
}
}
}
例如,testStreamX案例中的任何一个都是随机失败的。
上下文:代码以8作为并行性setu运行,因为它运行的cpu有8个核心
答案 0 :(得分:2)
我不知道你的工作的并列性(我想这是Flink可以分配的最大值)。看起来您可以在接收器的添加值上设置Race条件。
<强>解决方案强>
我已经运行了你的示例代码,将环境并行度设置为1,一切正常。有关测试的文档示例使用此解决方案link to documentation。
@Before
public void setup() {
env = StreamExecutionEnvironment.createLocalEnvironment();
env.setParallelism(1);
}
更好
您只能在接收器操作符上将并行性设置为1,并保持管道其余部分的并行性。在下面的示例中,我添加了一个额外的map函数,其强制并行度为8,用于tha map运算符。
public void testStream() throws Exception {
final int numberOfElements = 50;
DataStream<Tuple2<String, Integer>> tupleStream = env.fromCollection(getCollectionOfBucketImps(numberOfElements));
CollectSink.values.clear();
tupleStream
.map(new MapFunction<Tuple2<String,Integer>, Tuple2<String,Integer>>() {
@Override
public Tuple2<String,Integer> map(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
stringIntegerTuple2.f0 += "- concat something";
return stringIntegerTuple2;
}
}).setParallelism(8)
.addSink(new CollectSink()).setParallelism(1);
env.execute();
sleep(2000);
assertEquals(numberOfElements, getCollectionOfBucketImps(numberOfElements).size());
assertEquals(numberOfElements, CollectSink.values.size());
}
答案 1 :(得分:0)
当环境的parallellism大于1时,将存在CollectSink
的多个实例,这有可能导致竞争状况。
这些是避免出现竞争状况的解决方案:
private static class CollectSink implements SinkFunction<Tuple2<String, Integer>> {
public static final List<Tuple2<String, Integer>> values = new ArrayList<>();
@Override
public void invoke(Tuple2<String, Integer> value, Context context) throws Exception {
synchronized(CollectSink.class) {
values.add(value);
}
}
}
Collections.synchronizedList()
import java.util.Collections;
private static class CollectSink implements SinkFunction<Tuple2<String, Integer>> {
public static final List<Tuple2<String, Integer>> values = Collections.synchronizedList(new ArrayList<>());
@Override
public void invoke(Tuple2<String, Integer> value, Context context) throws Exception {
values.add(value);
}
}