我的文件很少,包含不同的文件:
darkflow
在darkflow的TFNet初始化期间,我收到此错误:
Traceback (most recent call last):
File "/home/justin/Projects/comp3931/main.py", line 6, in <module>
watcher = Watcher('res/vid/planet_earth_s01e01/video.mp4', 'res/vid/planet_earth_s01e01/english.srt')
File "/home/justin/Projects/comp3931/watch.py", line 9, in __init__
self.detector = Detector()
File "/home/justin/Projects/comp3931/detect.py", line 6, in __init__
self.tfnet = TFNet(self.options)
File "/usr/local/lib64/python3.6/site-packages/darkflow/net/build.py", line 75, in __init__
self.build_forward()
File "/usr/local/lib64/python3.6/site-packages/darkflow/net/build.py", line 105, in build_forward
self.inp = tf.placeholder(tf.float32, inp_size, 'input')
File "/usr/local/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 1677, in placeholder
raise RuntimeError("tf.placeholder() is not compatible with "
RuntimeError: tf.placeholder() is not compatible with eager execution.
所以,我假设当我从Translator
文件中实例化translate.py
类时,它会调用整个程序的急切执行,这与对darkflow {{1}的调用不兼容来自TFNet
Dectector
类中使用的类
如果我独立于其他人运行detect.py
它可以正常工作,如果在没有translate.py
的情况下运行它们,其他模块也可以正常工作。
我猜他们使用不同的上下文(graph / eager)这一事实,整个事情可以在同一个程序中一起运行。我已经尝试查看文档,但在需要时无法找到切换回图形模式的方法。
有什么方法可以在不同的地方在同一个应用程序中同时运行eager和graph模式吗?
答案 0 :(得分:8)
最好编写与图形模式和急切执行兼容的代码。来自documentation:
- 使用tf.data进行输入处理而不是队列。它更快更容易。
- 使用面向对象的层API(如tf.keras.layers和tf.keras.Model),因为它们具有显式的变量存储。
- 大多数模型代码在eager和graph执行期间的工作方式相同,但也有例外。 (例如,使用Python的动态模型 控制流程以根据输入改变计算。)
- 一旦使用tf.enable_eager_execution启用了急切执行,就无法关闭它。启动一个新的Python会话以返回图形 执行。
也就是说,可以使用tfe.py_func()
在图形模式下使用急切执行。这是文档中的代码示例(我刚刚添加了导入和断言):
import tensorflow as tf
import tensorflow.contrib.eager as tfe
def my_py_func(x):
assert tf.executing_eagerly()
x = tf.matmul(x, x) # You can use tf ops
print(x) # but it's eager!
return x
assert not tf.executing_eagerly()
with tf.Session() as sess:
x = tf.placeholder(dtype=tf.float32)
# Call eager function in graph!
pf = tfe.py_func(my_py_func, [x], tf.float32)
sess.run(pf, feed_dict={x: [[2.0]]}) # [[4.0]]
正如Alex Passos在this video中解释的那样,反过来也是可能的。这是一个受视频启发的例子:
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tf.enable_eager_execution()
def my_graph_func(x):
assert not tf.executing_eagerly()
w = tfe.Variable(2.0)
b = tfe.Variable(4.0)
return x * w + b
assert tf.executing_eagerly()
g = tfe.make_template("g", my_graph_func, create_graph_function_=True)
print(g(3))
使用eager_mode
中定义的graph_mode
和tensorflow.python.eager.context
上下文,这也是一种切换模式的非正式方式:
import tensorflow as tf
import tensorflow.contrib.eager as tfe
from tensorflow.python.eager.context import eager_mode, graph_mode
with eager_mode():
print("Eager mode")
assert tf.executing_eagerly()
x1 = tfe.Variable(5.0)
print(x1.numpy())
print()
with graph_mode():
print("Graph mode")
assert not tf.executing_eagerly()
x2 = tfe.Variable(5.0)
with tf.Session():
x2.initializer.run()
print(x2.eval())
由于它不是官方的,你应该在生产代码中避免它,但它可能在调试时或在Jupyter笔记本中派上用场。最后一个选项是使用此switch_to()
函数:
import tensorflow as tf
import tensorflow.contrib.eager as tfe
from tensorflow.python.eager.context import context, EAGER_MODE, GRAPH_MODE
def switch_to(mode):
ctx = context()._eager_context
ctx.mode = mode
ctx.is_eager = mode == EAGER_MODE
switch_to(EAGER_MODE)
assert tf.executing_eagerly()
v = tfe.Variable(3.0)
print(v.numpy())
assert tf.get_default_graph().get_operations() == []
switch_to(GRAPH_MODE)
assert not tf.executing_eagerly()
v = tfe.Variable(3.0)
init = tf.global_variables_initializer()
assert len(tf.get_default_graph().get_operations()) > 0
with tf.Session():
init.run()
print(v.eval())
这真的是一个黑客攻击,但如果您不想将所有代码嵌套在with
块中,它可能在Jupyter笔记本中很有用。
答案 1 :(得分:-1)
https://www.tensorflow.org/programmers_guide/eager (向下滚动到&#34;在图形环境中使用急切执行&#34;)。
也许这有帮助...