RDD在pyspark中抛出Py4JJavaError,同时发现它中的不同

时间:2018-03-13 15:55:47

标签: python apache-spark pyspark

我的用例是在我通过正则表达式收集的文档中找到唯一的IP并将其作为flatMap存储在RDD中 所以我的rdd读起来像这样

Input :rdd1.take(10)

Output :
    ['10.120.1.18',
     '8.8.4.4',
     '8.8.4.4',
     '10.36.18.54',
     '164.100.177.97',
     '10.120.1.18',
     '10.223.254.254',
     '185.81.208.1',
     '10.120.1.18',
     '172.217.24.238']

但是当我尝试从RDD接收不同的条目时,我会收到错误

Input :rdd1.distinct().collect()

Output :
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-120-6e3c2a926ccd> in <module>()
----> 1 rdd1.distinct().collect()

~\Workspace\spark\spark-2.3.0-bin-hadoop2.7\python\pyspark\rdd.py in collect(self)
    822         """
    823         with SCCallSiteSync(self.context) as css:
--> 824             port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
    825         return list(_load_from_socket(port, self._jrdd_deserializer))
    826 

~\Workspace\spark\spark-2.3.0-bin-hadoop2.7\python\lib\py4j-0.10.6-src.zip\py4j\java_gateway.py in __call__(self, *args)
   1158         answer = self.gateway_client.send_command(command)
   1159         return_value = get_return_value(
-> 1160             answer, self.gateway_client, self.target_id, self.name)
   1161 
   1162         for temp_arg in temp_args:

~\Workspace\spark\spark-2.3.0-bin-hadoop2.7\python\pyspark\sql\utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

~\Workspace\spark\spark-2.3.0-bin-hadoop2.7\python\lib\py4j-0.10.6-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
    318                 raise Py4JJavaError(
    319                     "An error occurred while calling {0}{1}{2}.\n".
--> 320                     format(target_id, ".", name), value)
    321             else:
    322                 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 78.0 failed 1 times, most recent failure: Lost task 0.0 in stage 78.0 (TID 79, localhost, executor driver): java.io.FileNotFoundException: C:\Users\Nicsi\AppData\Local\Temp\blockmgr-8869d431-a3f9-40e0-9c73-dd7fde45633a\36\temp_shuffle_f5a955d6-2603-4b94-afcc-0a0218cab063 (The system cannot find the path specified)
    at java.io.FileOutputStream.open0(Native Method)
    at java.io.FileOutputStream.open(FileOutputStream.java:270)
    at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
    at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:103)
    at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:116)
    at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:237)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1587)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1586)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1586)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1820)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1769)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1758)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2027)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2048)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2092)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:938)
    at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:153)
    at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.FileNotFoundException: C:\Users\Nicsi\AppData\Local\Temp\blockmgr-8869d431-a3f9-40e0-9c73-dd7fde45633a\36\temp_shuffle_f5a955d6-2603-4b94-afcc-0a0218cab063 (The system cannot find the path specified)
    at java.io.FileOutputStream.open0(Native Method)
    at java.io.FileOutputStream.open(FileOutputStream.java:270)
    at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
    at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:103)
    at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:116)
    at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:237)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
    at org.apache.spark.scheduler.Task.run(Task.scala:109)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

那么如何从RDD中获取不同的值并将其存储在其他值中。如果不按上述方式工作,我可以将所有数据放在DataFrame中并使用像pandas中的唯一一样来获得不同的值

0 个答案:

没有答案