我在Databricks上使用Spark 2.2并尝试实现Kinesis接收器以从Spark写入Kinesis流。
我正在使用以下提供的示例https://docs.databricks.com/_static/notebooks/structured-streaming-kinesis-sink.html
Int
然后我使用
实现KinesisSink类/**
* A simple Sink that writes to the given Amazon Kinesis `stream` in the given `region`. For authentication, users may provide
* `awsAccessKey` and `awsSecretKey`, or use IAM Roles when launching their cluster.
*
* This Sink takes a two column Dataset, with the columns being the `partitionKey`, and the `data` respectively.
* We will buffer data up to `maxBufferSize` before flushing to Kinesis in order to reduce cost.
*/
class KinesisSink(
stream: String,
region: String,
awsAccessKey: Option[String] = None,
awsSecretKey: Option[String] = None) extends ForeachWriter[(String, Array[Byte])] {
// Configurations
private val maxBufferSize = 500 * 1024 // 500 KB
private var client: AmazonKinesis = _
private val buffer = new ArrayBuffer[PutRecordsRequestEntry]()
private var bufferSize: Long = 0L
override def open(partitionId: Long, version: Long): Boolean = {
client = createClient
true
}
override def process(value: (String, Array[Byte])): Unit = {
val (partitionKey, data) = value
// Maximum of 500 records can be sent with a single `putRecords` request
if ((data.length + bufferSize > maxBufferSize && buffer.nonEmpty) || buffer.length == 500) {
flush()
}
buffer += new PutRecordsRequestEntry().withPartitionKey(partitionKey).withData(ByteBuffer.wrap(data))
bufferSize += data.length
}
override def close(errorOrNull: Throwable): Unit = {
if (buffer.nonEmpty) {
flush()
}
client.shutdown()
}
/** Flush the buffer to Kinesis */
private def flush(): Unit = {
val recordRequest = new PutRecordsRequest()
.withStreamName(stream)
.withRecords(buffer: _*)
client.putRecords(recordRequest)
buffer.clear()
bufferSize = 0
}
/** Create a Kinesis client. */
private def createClient: AmazonKinesis = {
val cli = if (awsAccessKey.isEmpty || awsSecretKey.isEmpty) {
AmazonKinesisClientBuilder.standard()
.withRegion(region)
.build()
} else {
AmazonKinesisClientBuilder.standard()
.withRegion(region)
.withCredentials(new AWSStaticCredentialsProvider(new BasicAWSCredentials(awsAccessKey.get, awsSecretKey.get)))
.build()
}
cli
}
}
最后我使用这个接收器创建了一个流。此KinesisSink采用两列数据集,其中列分别为val kinesisSink = new KinesisSink("us-east-1", "MyStream", Option("xxx..."), Option("xxx..."))
和partitionKey
。
data
但我仍然收到以下错误
case class MyData(partitionKey: String, data: Array[Byte])
val newsDataDF = kinesisDF
.selectExpr("apinewsseqid", "fullcontent").as[MyData]
.writeStream
.outputMode("append")
.foreach(kinesisSink)
.start
答案 0 :(得分:0)
您需要更改KinesisSink.process
方法的签名,它应该使用您自定义的MyData
对象,然后从那里提取partitionKey
和data
。
答案 1 :(得分:0)
我使用了与数据砖提供的KinesisSink完全相同的方法,并通过使用
创建数据集使它起作用val dataset = df.selectExpr("CAST(rand() AS STRING) as partitionKey","message_bytes").as[(String, Array[Byte])]
并使用数据集写入运动学流
val query = dataset
.writeStream
.foreach(kinesisSink)
.start()
.awaitTermination()
我使用dataset.selectExpr("partitionKey","message_bytes")
时遇到了相同的类型不匹配错误:
在这种情况下,不需要错误:类型不匹配;
找到:KinesisSink
必需:org.apache.spark.sql.ForeachWriter [(String,Array [Byte])]
.foreach(kinesisSink)
selectExpr
,因为数据集驱动了ForeachWriter的数据类型。