尝试为输入图像文件创建tfrecords。尝试了两个不同版本的Tfrecord创建脚本,遇到了两个不同的问题。以下是详细信息。
Verison 1:单个图像的硬编码图像路径,高度和宽度。
结果:为单个图像文件生成Tfrecord "发生了异常,使用%tb查看完整的回溯。 SystemExit"
版本2:一组5个图像 - 它们的路径,高度和重量 - 作为函数调用传递给tfrecord创建。
结果:为五个图像中的第一个生成Tfrecord,然后在Jupyter的QTConsole中生成内核死亡消息。
版本1代码:
###
###
def create_tf_example(label_and_data_info):
# TODO START: Populate the following variables from your example.
height = 256 # Image height - hardcoded
width = 256 # Image width - hardcoded
filename = 'C:\\Users\\Sethu\\Desktop\\Encoding\\0b2e702f90aee4fff2bc6e4326308d50cf04701082e718d4f831c8959fbcda93.png' # Filename of the image - hardcoded
filename = filename.encode()
with tf.gfile.GFile(filename, 'rb') as fid:
encoded_image = fid.read()
encoded_image_data = encoded_image # Encoded image bytes
image_format = b'png' # b'jpeg' or b'png'
xmins = [56/256] # List of normalized left x coordinates in bounding box
xmaxs = [200/256] # List of normalized right x coordinates in bounding box
ymins = [56/256] # List of normalized top y coordinates in bounding box
ymaxs = [200/256] #List of normalized bottom y coordinates in bounding box
classes_text = ['a'.encode()] # List of string class name of bounding box
classes = [1] # List of integer class id of bounding box
# TODO END
tf_label_and_data = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_image_data),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_label_and_data
###
###
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
# TODO: Write code to read in your dataset to examples variable
tf_example = create_tf_example('e') ## passing a dummy value to the function. All function values have been hard-coded.
writer.write(tf_example.SerializeToString())
writer.close()
if __name__ == '__main__':
tf.app.run()
###
###
第2版代码:
def create_tf_example(h, w , p):
# TODO START: Populate the following variables from your example.
height = h # Image height
width = w # Image width
filename = p # Filename of the image. Empty if image is not from file
filename = filename.encode()
with tf.gfile.GFile(filename, 'rb') as fid:
encoded_image = fid.read()
encoded_image_data = encoded_image # Encoded image bytes
image_format = b'png' # b'jpeg' or b'png'
xmins = [56/256] # List of normalized left x coordinates in bounding box
xmaxs = [200/256] # List of normalized right x coordinates in bounding box
ymins = [56/256] # List of normalized top y coordinates in bounding box
ymaxs = [200/256] # List of normalized bottom y coordinates in bounding box
classes_text = ['a'.encode()] # List of string class name of bounding box
classes = [1] # List of integer class id of bounding box (1 per box)
# TODO END
tf_label_and_data = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_image_data),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_label_and_data
##
##
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
for i in range(5):
p , h , w = Orig_images[i] # p - path, h - height, w - width of the image
tf_example = create_tf_example(h,w,p)
writer.write(tf_example.SerializeToString())
writer.close()
if __name__ == '__main__':
tf.app.run()
导致'系统退出的原因是什么?和内核死了#39;错误?如何生成tfrecord?