我基本上是想使用metafor包生成我的森林图。它目前效果非常好,除了它产生对数优势比的事实,而我想要纯粹的优势比本身。在metafor代码中有没有一种简单的方法呢?
#Metafor library
library(metafor)
#ReadXL library to import excel sheet
library(readxl)
#Name the data sheet from the excel file
ACDF<- read_excel("outpatient_ACDF_meta_analysis.xlsx")
#View the data sheet with view(ACDF)
dpi=600 #pixels per square inch
tiff("metaor.tif", width=6*dpi, height=5*dpi, res=dpi)
#This below measures with risk ratios. If you want to measure odds ratios, use argument measure=OR
returnop <- escalc(measure="OR", ai=op_return_OR, bi=op_no_return_OR, ci=ip_return_OR, di=ip_no_return_OR, data=ACDF)
#Generate a Random Effects Model
REmodel<-rma(yi=yi, vi=vi, data=returnop, slab=paste(Author, Year, sep=", "), method="REML")
#Generate a forest plot of the data
forest(REmodel, xlim=c(-17, 6),
ylim=c(-1, 10),
ilab=cbind(ACDF$op_return_OR, ACDF$op_no_return_OR, ACDF$ip_return_OR,
ACDF$ip_no_return_OR),
ilab.xpos=c(-10,-8.4,-6.6,-4.9), cex=.75,
psize=1)
### add column headings to the plot
text(c(-10,-8.4,-6.6,-4.9), 8.5, c("Return+", "Return-", "Return+", "Return-"),
cex = 0.65)
text(c(-9.25,-5.75), 9.5, c("Outpatient", "Inpatient"))
text(-17, 8.5, "Study", pos=4)
text(6, 8.5, "Log Odds Ratio [95% CI]", pos=2)
dev.off()
感谢所有人的帮助!
答案 0 :(得分:0)
如setup.py
函数中所述:
'measure'参数的选项是:
from cx_Freeze import setup, Executable import sys import os from pathlib import Path user_txt_path = [] if sys.platform=='win32': base = "Win32GUI" user_txt_path.append('chromedriver.exe') import os.path PYTHON_INSTALL_DIR = os.path.dirname(os.path.dirname(os.__file__)) os.environ['TCL_LIBRARY'] = os.path.join(PYTHON_INSTALL_DIR, 'tcl', 'tcl8.6') os.environ['TK_LIBRARY'] = os.path.join(PYTHON_INSTALL_DIR, 'tcl', 'tk8.6') else: base = None user_txt_path.append('chromedriver') buildOptions = {"include_files": [user_txt_path[0], 'u.pkl', 'tcl86t.dll', 'tk86t.dll'], "packages": ['encodings', "os"], "includes": ['numpy.core._methods', 'numpy.lib.format'], "excludes": []} executables = [ Executable('TachySloth.py', base=base, icon='sloth.ico')#base) ] ''' home_path = str(Path.home()) pathname = str(os.path.dirname(sys.argv[0])) #for initialization f = open(home_path + user_txt_path[0], "w+") for i in range(12): f.write("---\n") ''' setup(name='TachySloth', version = 'beta', #description = 'test', #shortcutName="TachySloth", #shortcutDir="DesktopFolder", options = dict(build_exe = buildOptions), executables = executables )
出于这个原因,我猜你的问题的答案是否定的,因为没有escalc
值会给你纯奇数比率和所有分析/数字使用纯比值比(OR)。如果你想要纯粹的我的猜测,你必须使用 • ‘"RR"’ for the _log risk ratio_.
• ‘"OR"’ for the _log odds ratio_.
• ‘"RD"’ for the _risk difference_.
• ‘"AS"’ for the _arcsine square root transformed risk
difference_ (Rücker et al., 2009).
• ‘"PETO"’ for the _log odds ratio_ estimated with Peto's
method (Yusuf et al., 1985).
Note that the log is taken of the risk ratio and the odds
ratio, which makes these outcome measures symmetric around 0
and yields corresponding sampling distributions that are
closer to normality.
,例如measure
来获得奇数比率和几个类似的微积分,以使所有结果以纯奇数比率表示。可能还有另一种我不知道的方式。
答案 1 :(得分:0)
实施forest()
功能时,添加"atransf = exp"
参数。
应该这样做。
"forest(REmodel, xlim=c(-17, 6), ylim=c(-1, 10),
ilab=cbind(ACDF$op_return_OR, ACDF$op_no_return_OR, ACDF$ip_return_OR,
ACDF$ip_no_return_OR), ilab.xpos=c(-10,-8.4,-6.6,-4.9), cex=.75,
psize=1, atransf="exp")"
让我知道它是否有效,如果您有任何其他问题!