我正在尝试对data.table进行条件求和,并设法以杂乱的方式进行。我想知道是否可以更优雅地做到这一点?
请考虑以下事项:
library(data.table)
stock_profile <- data.table(Pcode = c(123456L, 234567L, 345678L, 456789L, 567891L, 678912L, 789123L, 891234L, 912345L, 123456L, 234567L, 345678L, 456789L, 567891L, 678912L, 789123L, 891234L, 912345L),
Value = c(51.96, 89.64, 21.56, 56.04, 47.56,83.68, 42.21, 66.56, 62.72, 35.00, 3.40, 30.82, 59.83, 82.17, 14.02, 25.70, 81.38, 50.33),
Location = c("A", "A", "A", "A", "A", "A", "A", "A", "A","B", "B", "B", "B", "B", "B", "B", "B", "B"),
NoSales = c("","", "Y", "", "", "Y", "", "", "Y", "", "", "Y", "Y", "","", "", "Y", "Y"))
哪个应该导致以下结果:
Pcode Value Location NoSales
123456 51.96 A
234567 89.64 A
345678 21.56 A Y
456789 56.04 A
567891 47.56 A
678912 83.68 A Y
789123 42.21 A
891234 66.56 A
912345 62.72 A Y
123456 35 B
234567 3.4 B
345678 30.82 B Y
456789 59.83 B Y
567891 82.17 B
678912 14.02 B
789123 25.7 B
891234 81.38 B Y
912345 50.33 B Y
我要做的是将库存从位置B转移到A,并找出没有销售的库存总价值。所以我需要在位置A的NoSales中带有标志Y的所有产品的价值总和,以及位置B中位置A中没有销售标志Y的所有产品的价值。
到目前为止,我已经完成了以下工作:
# get all NoSales flag Y products in Location A
ANoSales <- stock_profile[Location == "A" & NoSales == "Y"]
# get all prodcuts in location B
BStock <- stock_profile[Location == "B"]
# left merge
NoSalesAll <- merge(ANoSales,BStock,by="Pcode",all.x = TRUE)
# create new column aggregating the value and give the total sum
NoSalesAll[,Value := Value.x + Value.y][,sum(Value)]
它有效,但不是很优雅。我认为ifelse应该可以吗?欢迎并赞赏任何建议:)
答案 0 :(得分:5)
我不确定这是多么优雅,但在这里,
library(data.table)
sum(
rowSums(dcast(stock_profile, Pcode ~ Location + NoSales, value.var = 'Value')
[!is.na(A_Y), -1], na.rm = TRUE)
)
#[1] 263.13
根据@ Frank的评论,我们可以使用rowSums
来避免.SD
,
dcast(dt, Pcode ~ Location + NoSales, value.var = 'Value')[
!is.na(A_Y), sum(.SD, na.rm=TRUE), .SDcols=-1]
答案 1 :(得分:2)
我喜欢Sotos answer。
但如果你定义&#34;优雅&#34;作为data.table
以外的其他方法,与dplyr
的方法相比:
stock_profile %>%
filter(Location=="A" & NoSales=="Y") %>%
left_join(filter(stock_profile, Location=="B"), by="Pcode") %>%
mutate(value=Value.x+Value.y) %>%
summarise_at(vars(value),sum)
输出
value
1 263.13
答案 2 :(得分:1)
这是我的贡献。
setkey(stock_profile, Location, NoSales)
DT1 = stock_profile[.("A","Y"), sum(Value),by=.(Pcode)]
DT2 = stock_profile[.("B"), sum(Value),by=.(Pcode)]
DT = merge(DT1, DT2, by="Pcode", all.x=TRUE)
DT[, .SD, .SDcols = names(DT) %like% "V1.x|V1.y"][,sum(V1.x,V1.y)]