添加元组元素,解析为pandas DataFrame

时间:2018-03-09 21:31:32

标签: python pandas

我有几个元组的Python列表:

[(0, 61), (1, 30), (5, 198), (4, 61), (0, 30), (5, 200)]
[(1, 72), (2, 19), (3, 31), (4, 192), (6, 72), (5, 75)]
[(3, 12), (0, 51)]
...

创建每个元组,使其格式为(key, value)

有七个键:0,1,2,3,4,5,6

预期输出是一个pandas DataFrame,每个列都由键命名:

import pandas as pd
print(df)

0    1    2    3    4    5    6 
91   30   0    0    61   198  0
0    72   19   31   192  75   72
51   0    0    12   0    0    0

现在,我在概念上遇到的问题是如何添加几个元组"值"如果他们的钥匙是相同的。

我可以访问给定列表的这些值,例如

mylist = [(0, 61), (1, 30), (5, 198), (4, 61), (0, 30), (5, 200)]
keys =  [x[0] for x in mylist]

print(keys)
[0, 1, 5, 4, 0, 5]

我不确定如何制作,例如密钥的字典:值对,我可以将其加载到pandas DataFrame

4 个答案:

答案 0 :(得分:4)

以名称tups

考虑您的数据
tups = [
    [(0, 61), (1, 30), (5, 198), (4, 61), (0, 30), (5, 200)],
    [(1, 72), (2, 19), (3, 31), (4, 192), (6, 72), (5, 75)],
    [(3, 12), (0, 51)]
]

选项0
使用np.bincount和疯狂的地图,拉链和splats
这是有效的,因为np.bincount的前两个参数是位置数组和添加时使用的可选权重数组。

pd.DataFrame(
    list(map(lambda t: np.bincount(*zip(*t)), tups))
).fillna(0, downcast='infer')

    0   1   2   3    4    5   6
0  91  30   0   0   61  398   0
1   0  72  19  31  192   75  72
2  51   0   0  12    0    0   0

选项1
在轴级上使用理解和求和。

pd.Series({
    (i, j, k): v
    for i, row in enumerate(tups)
    for k, (j, v) in enumerate(row)
}).sum(level=[0, 1]).unstack(fill_value=0)

    0   1   2   3    4    5   6
0  91  30   0   0   61  398   0
1   0  72  19  31  192   75  72
2  51   0   0  12    0    0   0

选项2
您可以对使用defaultdict的结果使用DataFrame构造函数:

from collections import defaultdict

d = defaultdict(lambda: defaultdict(int))

for i, row in enumerate(tups):
    for j, v in row:
        d[j][i] += v

pd.DataFrame(d).fillna(0, downcast='infer')

    0   1   2   3    4    5   6
0  91  30   0   0   61  398   0
1   0  72  19  31  192   75  72
2  51   0   0  12    0    0   0

选项3
创建零数据帧并通过迭代更新它

n, m = len(tups), max(j for row in tups for j, _ in row) + 1

df = pd.DataFrame(0, range(n), range(m))

for i, row in enumerate(tups):
    for j, v in row:
        df.at[i, j] += v

df

    0   1   2   3    4    5   6
0  91  30   0   0   61  398   0
1   0  72  19  31  192   75  72
2  51   0   0  12    0    0   0

答案 1 :(得分:3)

使用piRSquared的例子:

tups = [
    [(0, 61), (1, 30), (5, 198), (4, 61), (0, 30), (5, 200)],
    [(1, 72), (2, 19), (3, 31), (4, 192), (6, 72), (5, 75)],
    [(3, 12), (0, 51)]
]

#First build a dict for each row with unique keys.
data = [{f[0]:[] for f in e} for e in tups]
#add values to the dict as list which can capture multiple values.
[[data[k][e[0]].append(e[1]) for e in v] for k,v in enumerate(tups)]
#sum values for each key for each row.
data = [{k:sum(v) for k,v in e.items()} for e in data]
# build a df and fillna with 0
pd.DataFrame(data).fillna(0, downcast='infer')

Out[127]: 
    0   1   2   3    4    5   6
0  91  30   0   0   61  398   0
1   0  72  19  31  192   75  72
2  51   0   0  12    0    0   0

答案 2 :(得分:2)

我会:

  • 合并内部列表(将相同的密钥添加到一起)
  • 从合并列表创建集合到集合列表(我将其与第1步合并)
  • 制作数据框
  • 替换NaN s
import pandas as pd

data = [  [(0, 61), (1, 30), (5, 198), (4, 61), (0, 30), (5, 200)],
          [(1, 72), (2, 19), (3, 31), (4, 192), (6, 72), (5, 75)],
          [(0, 71), (1, 40), (5, 98), (4, 21), (0, 10), (5, 21200)],      # addon
          [(1, 702), (2, 190), (3, 310), (4, 1092), (6, 702), (5, 705)],  # addon
          ]

consolidated = []
for li in data:
    row = {}  # instead of replacing NaNs you could prefill: row = {k:0 for k in range(7)}
     for tup in li:
        key,val = tup
        row.setdefault(key,0)
        row[key]+=val
    consolidated.append (row)

df = pd.DataFrame(consolidated)
df = df.fillna(0)                  # replace NaN's with 0
print(df)

输出:

      0    1      2      3     4      5      6
0  91.0   30    0.0    0.0    61    398    0.0
1   0.0   72   19.0   31.0   192     75   72.0
2  81.0   40    0.0    0.0    21  21298    0.0
3   0.0  702  190.0  310.0  1092    705  702.0

答案 3 :(得分:2)

您可以先为每个元素应用groupby按键加值,然后使用pandas转换为数据帧。 注意您必须在求和之前先按键排序。

import pandas as pd
from itertools import groupby

data = [
    [(0, 61), (1, 30), (5, 198), (4, 61), (0, 30), (5, 200)],
    [(1, 72), (2, 19), (3, 31), (4, 192), (6, 72), (5, 75)],
    [(0, 71), (1, 40), (5, 98), (4, 21), (0, 10), (5, 21200)],
    [(1, 702), (2, 190), (3, 310), (4, 1092), (6, 702), (5, 705)],
] # copying example from @PatrickArtnerz solution

def group_sum(data):
    """given list, return dictionary of summation based on initial key"""
    data_dict = {k: sum(v_[1] for v_ in v) for k, v in groupby(sorted(data, key=lambda x: x[0]), lambda x: x[0])}
    return data_dict

df = pd.DataFrame(list(map(group_sum, data))).fillna(0)