我正试图让DEAP在火花集群中并行化。我已经看到其他用户引用了这个,因为它允许通过yarn轻松地与现有服务器架构紧密集成。我已经在参考文献中引用了几个在线教程。我有deap的代码,然后是我试图转换为使用spark的代码。同样的错误'无法获取模块deap.creator上的个人'是通常出现的错误。
import numpy as np
import random
from deap import base
from deap import creator
from deap import tools
from deap import algorithms
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
def evalOneMax(individual):
return sum(individual),
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attr_bool, 100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# Define parallelism outside main
if __name__=="__main__":
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,
stats=stats, halloffame=hof, verbose=True)
冉:
python3 test-deap.py
gen nevals avg std min max
0 300 50.5533 4.78893 38 63
1 184 54.2433 3.85627 44 65
2 191 57.2667 3.38756 47 65
3 182 60.0333 3.15154 51 69
4 179 62.35 2.95762 53 71
5 176 64.3267 2.77968 55 73
6 183 66.2467 2.80223 58 75
7 182 68.1733 2.66019 59 79
8 186 69.8367 2.83255 62 77
9 179 71.7233 2.70557 59 78
10 187 73.3667 2.63165 63 80
11 169 74.7933 2.43255 65 80
12 182 76.0967 2.42363 65 82
13 204 77.3 2.36995 67 83
14 203 78.6267 2.31818 70 84
15 182 79.8933 2.29535 72 84
16 183 81.02 2.29483 72 86
17 185 81.87 2.41242 73 87
18 190 83.0633 2.13057 74 87
19 182 84.06 2.16096 75 89
20 194 84.8167 2.41724 77 91
21 174 85.9633 2.22755 79 91
22 180 86.8033 2.23263 79 92
23 177 87.7533 2.3831 78 93
24 174 88.61 2.34334 79 93
25 171 89.6167 2.36144 78 95
26 195 90.57 2.4695 81 95
27 169 91.5233 2.23072 82 96
28 173 92.3733 2.16347 83 97
29 203 93.1 2.13151 85 97
30 179 93.6067 2.41356 84 98
31 169 94.3067 2.23293 86 99
32 184 94.8933 2.49706 85 99
33 175 95.8733 2.14413 88 99
34 168 96.2167 2.30428 88 99
35 173 96.88 2.22537 87 100
36 171 97.33 2.29951 87 100
37 184 97.89 2.05375 91 100
38 175 98.0333 2.52565 88 100
39 176 98.6667 2.07579 90 100
40 175 98.6867 2.32562 91 100
from pyspark import SparkContext
import numpy as np
import random
from deap import base
from deap import creator
from deap import tools
from deap import algorithms
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
def evalOneMax(individual):
return sum(individual),
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual,
toolbox.attr_bool, 100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# Define parallelism outside main
if __name__=="__main__":
sc = SparkContext(appName="DEAP")
def sparkMap(algorithm, population):
return sc.parallelize(population).map(algorithm).collect()
toolbox.register("map", sparkMap)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=40,
stats=stats, halloffame=hof, verbose=True)
冉:
spark-submit --master local test-deap.py
亮点:
Traceback (most recent call last):
File "/Users/ryapeach/Documents/Workspace/relay-death/test-deap.py", line 45, in <module>
stats=stats, halloffame=hof, verbose=True)
File "/usr/local/lib/python3.6/site-packages/deap-1.2.2-py3.6-macosx-10.13-x86_64.egg/deap/algorithms.py", line 150, in eaSimple
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
File "/Users/ryapeach/Documents/Workspace/relay-death/test-deap.py", line 32, in sparkMap
return sc.parallelize(population).map(algorithm).collect()
AttributeError: Can't get attribute 'Individual' on <module 'deap.creator' from '/usr/local/lib/python3.6/site-packages/deap-1.2.2-py3.6-macosx-10.13-x86_64.egg/deap/creator.py'>