我有两个包含相同列的DataFrame;一个id
,一个date
和一个str
:
df1 = pd.DataFrame({'id': ['1', '2', '3', '4', '10'],
'date': ['4', '5', '6', '7', '8'],
'str': ['a', 'b', 'c', 'd', 'e']})
df2 = pd.DataFrame({'id': ['1', '2', '3', '4', '12'],
'date': ['4', '5', '6', '7', '8'],
'str': ['A', 'B', 'C', 'D', 'Q']})
我想在id
和date
列上加入这两个数据集,并创建一个结果列,该列是str
的串联:
df3 = pd.DataFrame({'id': ['1', '2', '3', '4', '10', '12'],
'date': ['4', '5', '6', '7', '8', '8'],
'str': ['aA', 'bB', 'cC', 'dD', 'e', 'Q']})
我想我可以进行内连接,然后连接字符串,但是有更简单的方法来实现吗?
答案 0 :(得分:6)
IIUC concat
+ groupby
pd.concat([df1,df2]).groupby(['date','id']).str.sum().reset_index()
Out[9]:
date id str
0 4 1 aA
1 5 2 bB
2 6 3 cC
3 7 4 dD
4 8 10 e
5 8 12 Q
如果我们根据级别
使用sum()
来考虑效率
pd.concat([df1,df2]).set_index(['date','id']).sum(level=[0,1]).reset_index()
Out[12]:
date id str
0 4 1 aA
1 5 2 bB
2 6 3 cC
3 7 4 dD
4 8 10 e
5 8 12 Q
答案 1 :(得分:6)
使用radd
:
i = df1.set_index(['date', 'id'])
j = df2.set_index(['date', 'id'])
j['str'].radd(i['str'], fill_value='').reset_index()
date id str
0 4 1 aA
1 5 2 bB
2 6 3 cC
3 7 4 dD
4 8 10 e
5 8 12 Q
这应该很快。