我有一个减去两个数据帧的用例。所以我使用了除()方法之外的数据帧。
这在较小的数据集上本地工作正常。
但是当我运行AWS S3存储桶时,except()方法没有按预期减少。在分布式环境中是否需要注意什么?
有没有人遇到过类似的问题?
这是我的示例代码
val values = List(List("One", "2017-07-01T23:59:59.000", "2017-11-04T23:59:58.000", "A", "Yes")
, List("Two", "2017-07-01T23:59:59.000", "2017-11-04T23:59:58.000", "X", "No")
, List("Three", "2017-07-09T23:59:59.000", "2017-12-05T23:59:58.000", "M", "Yes")
, List("Four", "2017-11-01T23:59:59.000", "2017-12-09T23:59:58.000", "A", "No")
, List("Five", "2017-07-09T23:59:59.000", "2017-12-05T23:59:58.000", "", "No")
,List("One", "2017-07-01T23:59:59.000", "2017-11-04T23:59:58.000", "", "No")
)
.map(row => (row(0), row(1), row(2), row(3), row(4)))
val spark = SparkSession.builder().master("local").getOrCreate()
import spark.implicits._
val df = values.toDF("KEY", "ROW_START_DATE", "ROW_END_DATE", "CODE", "Indicator")
val filterCond = (col("ROW_START_DATE") <= "2017-10-31T23:59:59.999" && col("ROW_END_DATE") >= "2017-10-31T23:59:59.999" && col("CODE").isin("M", "A", "R", "G"))
val Filtered = df.filter(filterCond)
val Excluded = df.except(df.filter(filterCond))
预期产出:
df.show(false)
Filtered.show(false)
Excluded.show(false)
+-----+-----------------------+-----------------------+----+---------+
|KEY |ROW_START_DATE |ROW_END_DATE |CODE|Indicator|
+-----+-----------------------+-----------------------+----+---------+
|One |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000|A |Yes |
|Two |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000|X |No |
|Three|2017-07-09T23:59:59.000|2017-12-05T23:59:58.000|M |Yes |
|Four |2017-11-01T23:59:59.000|2017-12-09T23:59:58.000|A |No |
|Five |2017-07-09T23:59:59.000|2017-12-05T23:59:58.000| |No |
|One |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000| |No |
+-----+-----------------------+-----------------------+----+---------+
+-----+-----------------------+-----------------------+----+---------+
|KEY |ROW_START_DATE |ROW_END_DATE |CODE|Indicator|
+-----+-----------------------+-----------------------+----+---------+
|One |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000|A |Yes |
|Three|2017-07-09T23:59:59.000|2017-12-05T23:59:58.000|M |Yes |
+-----+-----------------------+-----------------------+----+---------+
+----+-----------------------+-----------------------+----+---------+
|KEY |ROW_START_DATE |ROW_END_DATE |CODE|Indicator|
+----+-----------------------+-----------------------+----+---------+
|Four|2017-11-01T23:59:59.000|2017-12-09T23:59:58.000|A |No |
|Two |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000|X |No |
|Five|2017-07-09T23:59:59.000|2017-12-05T23:59:58.000| |No |
|One |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000| |No |
+----+-----------------------+-----------------------+----+---------+
但是在S3存储桶上运行时会得到类似下面的东西
Filtered.show(false)
+-----+-----------------------+-----------------------+----+---------+
|KEY |ROW_START_DATE |ROW_END_DATE |CODE|Indicator|
+-----+-----------------------+-----------------------+----+---------+
|One |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000|A |Yes |
|Three|2017-07-09T23:59:59.000|2017-12-05T23:59:58.000|M |Yes |
+-----+-----------------------+-----------------------+----+---------+
Excluded.show(false)
+----+-----------------------+-----------------------+----+---------+
|KEY |ROW_START_DATE |ROW_END_DATE |CODE|Indicator|
+----+-----------------------+-----------------------+----+---------+
|One |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000|A |Yes |---> wrong
|Four|2017-11-01T23:59:59.000|2017-12-09T23:59:58.000|A |No |
|Two |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000|X |No |
|Five|2017-07-09T23:59:59.000|2017-12-05T23:59:58.000| |No |
|One |2017-07-01T23:59:59.000|2017-11-04T23:59:58.000| |No |
+----+-----------------------+-----------------------+----+---------+
还有其他方法可以执行减去两个火花数据帧吗?
答案 0 :(得分:1)
S3不是一个文件系统,it can surface in spark
如果它不能与s3a://在issues.apache.org上提交SPARK-JIRA,请将s3a放在文本中,包括此代码段(隐式将其许可给ASF)。然后,我可以将其复制到测试和测试中。看看我是否能看到它,如果是的话,当我在Hadoop 3.1 +中打开s3guard时它是否会消失
答案 1 :(得分:1)
一个可以基于两个数据帧的唯一性在两个数据帧上使用leftanti连接,这将为您提供期望的除外操作输出。
val diffdf = df1.join(df2,Seq("uniquekey"),"leftanti")