我正在开展一个项目,在这个项目中,我从Twitter中提取推文并对特定关键字进行情绪分析以得出结论。不幸的是,我已经到了令我难过的地步。我有一个情绪分析代码:
当我使用它时:blob = TextBlob(tweet[text])
我收到以下错误:
Traceback(最近一次调用最后一次):文件 “C:/Users/Michael/python/Sentiment2.py”,第65行,in blob = TextBlob(tweet [text])NameError:名称'text'未定义
import json
import re
import operator
from textblob import TextBlob
from collections import Counter
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import string
import os, sys, codecs
import csv
import sys
from nltk import bigrams
emoticons_str = r"""
(?:
[:=;] # Eyes
[oO\-]? # Nose (optional)
[D\)\]\(\]/\\OpP] # Mouth
)"""
regex_str = [
emoticons_str,
r'<[^>]+>', # HTML tags
r'(?:@[\w_]+)', # @-mentions
r"(?:\#+[\w_]+[\w\'_\-]*[\w_]+)", # hash-tags
r'http[s]?://(?:[a-z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-f][0-9a-f]))+', # URLs
r'(?:(?:\d+,?)+(?:\.?\d+)?)', # numbers
r"(?:[a-z][a-z'\-_]+[a-z])", # words with - and '
r'(?:[\w_]+)', # other words
r'(?:\S)' # anything else
]
tokens_re = re.compile(r'('+'|'.join(regex_str)+')', re.VERBOSE | re.IGNORECASE)
emoticon_re = re.compile(r'^'+emoticons_str+'$', re.VERBOSE | re.IGNORECASE)
def tokenize(s):
return tokens_re.findall(s)
def preprocess(s, lowercase=False):
tokens = tokenize(s)
if lowercase:
tokens = [token if emoticon_re.search(token) else token.lower() for token in tokens]
return tokens
punctuation = list(string.punctuation)
stop = stopwords.words('english') + punctuation + ['rt', 'via']
fname = 'python.json'
with open(fname, 'r') as f:
lis=[]
neg=0.0
n=0.0
net=0.0
pos=0.0
p=0.0
count_all = Counter()
cout=0
for line in f:
try:
tweet = json.loads(line)
except:
continue
# Create a list with all the terms
blob = TextBlob(tweet[text])
cout+=1
lis.append(blob.sentiment.polarity)
#print blob.sentiment.subjectivity
#print (os.listdir(tweet["text"]))
if blob.sentiment.polarity < 0:
sentiment = "negative"
neg+=blob.sentiment.polarity
n+=1
elif blob.sentiment.polarity == 0:
sentiment = "neutral"
net+=1
else:
sentiment = "positive"
pos+=blob.sentiment.polarity
p+=1
# output sentiment
print("Total tweets"),len(lis)
print("Positive"),float(p/cout)*100,"%"
print("Negative"),float(n/cout)*100,"%"
print("Neutral"),float(net/len(lis))*100,"%"
#print lis
# determine if sentiment is positive, negative, or neutral
# output sentiment
#print sentiment
答案 0 :(得分:0)
更改此
# Create a list with all the terms
blob = TextBlob(tweet[text])
到
# Create a list with all the terms
blob = TextBlob(tweet['text'])