我有一个具有以下结构的数据框(摘要示例,不是实际的)
dput(df1)
structure(list(MedID = c(111, 111, 111, 111, 111, 111, 222, 222,
222, 222, 222), Service = structure(c(1L, 1L, 2L, 1L, 1L, 3L,
3L, 2L, 1L, 1L, 3L), .Label = c("Acute care", "Ext care", "Outpt
care"), class = "factor"), AdmitDate = structure(c(16832, 16861,
16892, 16922, 16953, 16983, 17181, 17212, 17240, 17271, 17301), class
= "Date"), Flag = c(0, 0, 99, 0, 0, 0, 0, 99, 0, 0, 0)), .Names =
c("MedID", "Service", "AdmitDate", "Flag"), row.names = c(NA, -11L),
class = "data.frame")
> df1
MedID Service AdmitDate Flag
1 111 Acute care 2016-02-01 0
2 111 Acute care 2016-03-01 0
3 111 Ext care 2016-04-01 99
4 111 Acute care 2016-05-01 0
5 111 Acute care 2016-06-01 0
6 111 Outpt care 2016-07-01 0
7 222 Outpt care 2017-01-15 0
8 222 Ext care 2017-02-15 99
9 222 Acute care 2017-03-15 0
10 222 Acute care 2017-04-15 0
11 222 Outpt care 2017-05-15 0
我希望使用dplyr,group_by(MedID)和mutate在新数据框中添加一个列(让我们在df2中将其称为Flag2),以便在每个患者(MedID)中df2 $ Flag2列== 1 用于该唯一MedID 中的每个后续行,但仅在df1 $ Flag列== 99之后,否则df2 $ Flag2列获得0.如果df1 $ Flag ==,我可以根据需要对其进行编码在MedID的第一行中为99,但是否则我的代码在df2 $ Flag2中仅在df1 $ Flag == 99,或的行中生成1,它为给定的所有行生成1 MedID,其中df1 $ Flag == 99.所需的输出为:
dput(df2)
structure(list(MedID = c(111, 111, 111, 111, 111, 111, 222, 222,
222, 222, 222), Service = structure(c(1L, 1L, 2L, 1L, 1L, 3L,
3L, 2L, 1L, 1L, 3L), .Label = c("Acute care", "Ext care", "Outpt
care"), class = "factor"), AdmitDate = structure(c(16832, 16861,
16892,16922, 16953, 16983, 17181, 17212, 17240, 17271, 17301), class
= "Date"),Flag = c(0, 0, 99, 0, 0, 0, 0, 99, 0, 0, 0), Flag2 = c(0,
0, 1, 1, 1, 1, 0, 1, 1, 1, 1)), .Names = c("MedID", "Service",
"AdmitDate", "Flag", "Flag2"), row.names = c(NA, -11L), class =
"data.frame")
> df2
MedID Service AdmitDate Flag Flag2
1 111 Acute care 2016-02-01 0 0
2 111 Acute care 2016-03-01 0 0
3 111 Ext care 2016-04-01 99 1
4 111 Acute care 2016-05-01 0 1
5 111 Acute care 2016-06-01 0 1
6 111 Outpt care 2016-07-01 0 1
7 222 Outpt care 2017-01-15 0 0
8 222 Ext care 2017-02-15 99 1
9 222 Acute care 2017-03-15 0 1
10 222 Acute care 2017-04-15 0 1
11 222 Outpt care 2017-05-15 0 1
这是代码的片段示例,但由于它没有正确执行,因此不完整...我是否需要将mutate嵌套在For循环中,这看起来像是混合的R编码? :(注意:df1 $ Flag每个MedID只能== 99次,我觉得应该会更容易。
`df2 <- df1 %>% `
`group_by(MedID) %>%`
`mutate(Flag2 = ifelse(df1$Flag == 99, 1, 0))`
答案 0 :(得分:0)
一种解决方案可能是使用fill
中的tidyr
。方法是首先添加Flag2
并为1
分配Flag == 99
,否则为NA
。
现在在Flag2
列中向下填充行。最后将所有NA
替换为0。
library(tidyverse)
df1 %>%
group_by(MedID) %>%
mutate(Flag2 = ifelse(Flag == 99, 1L, NA)) %>%
fill(Flag2) %>%
mutate(Flag2 = ifelse(is.na(Flag2), 0L, Flag2))
虽然OP
没有提及,但如果AdmitDate
预计在匹配Flag == 99
之后决定哪一行,那么应该在上面的代码中添加安排。
df1 %>%
group_by(MedID) %>%
mutate(Flag2 = ifelse(Flag == 99, 1L, NA)) %>%
arrange(AdmitDate) %>%
fill(Flag2) %>%
mutate(Flag2 = ifelse(is.na(Flag2), 0L, Flag2))