在AWS Glue中,我需要将浮点值(摄氏度到华氏度)转换为使用UDF。
以下是我的UDF:
toFahrenheit = udf(lambda x: '-1' if x in not_found else x * 9 / 5 + 32, StringType())
我在spark数据帧中使用UDF如下:
weather_df.withColumn("new_tmax", toFahrenheit(weather_df["tmax"])).drop("tmax").withColumnRenamed("new_tmax","tmax")
当我运行代码时,收到错误消息:
IllegalArgumentException: u"requirement failed: The number of columns doesn't match.\nOld column names (11): station, name, latitude, longitude, elevation, date, awnd, prcp, snow, tmin, tmax\nNew column names (0): "
不知道如何调用UDF,因为我是python / pyspark的新手,并且我的新列架构未创建,并且为空。
用于上述示例的代码剪切是:
%pyspark
import sys
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.context import DynamicFrame
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from awsglue.job import Job
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
glueContext = GlueContext(SparkContext.getOrCreate())
weather_raw = glueContext.create_dynamic_frame.from_catalog(database = "ohare-airport-2006", table_name = "ohare_intl_airport_2006_08_climate_csv")
print "cpnt : ", weather_raw.count()
weather_raw.printSchema()
weather_raw.toDF().show(10)
#UDF to convert the air temperature from celsius to fahrenheit (For sample transformation)
#toFahrenheit = udf((lambda c: c[1:], c * 9 / 5 + 32)
toFahrenheit = udf(lambda x: '-1' if x in not_found_cat else x * 9 / 5 + 32, StringType())
#Apply the UDF to maximum and minimum air temperature
wthdf = weather_df.withColumn("new_tmin", toFahrenheit(weather_df["tmin"])).withColumn("new_tmax", toFahrenheit(weather_df["tmax"])).drop("tmax").drop("tmin").withColumnRenamed("new_tmax","tmax").withColumnRenamed("new_tmin","tmin")
wthdf.toDF().show(5)
的架构
weather_df:
root
|-- station: string
|-- name: string
|-- latitude: double
|-- longitude: double
|-- elevation: double
|-- date: string
|-- awnd: double
|-- fmtm: string
|-- pgtm: string
|-- prcp: double
|-- snow: double
|-- snwd: long
|-- tavg: string
|-- tmax: long
|-- tmin: long
错误追踪:
Traceback (most recent call last):
File "/tmp/zeppelin_pyspark-3684249459612979499.py", line 349, in <module>
raise Exception(traceback.format_exc())
Exception: Traceback (most recent call last):
File "/tmp/zeppelin_pyspark-3684249459612979499.py", line 342, in <module>
exec(code)
File "<stdin>", line 3, in <module>
File "/usr/lib/spark/python/pyspark/sql/dataframe.py", line 1558, in toDF
jdf = self._jdf.toDF(self._jseq(cols))
File "/usr/lib/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/lib/spark/python/pyspark/sql/utils.py", line 79, in deco
raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace)
IllegalArgumentException: u"requirement failed: The number of columns doesn't match.\nOld column names (11): station, name, latitude, longitude, elevation, date, awnd, prcp, snow, tmin, tmax\nNew column names (0): "
由于
答案 0 :(得分:0)
以上解决方案(Celcius to Fahrenheit),以防参考:
#UDF to convert the air temperature from celsius to fahrenheit
toFahrenheit = udf(lambda x: x * 9 / 5 + 32, StringType())
weather_in_Fahrenheit = weather_df.withColumn("new_tmax", toFahrenheit(weather_df["tmax"])).withColumn("new_tmin", toFahrenheit(weather_df["tmin"])).drop("tmax").drop("tmin").withColumnRenamed("new_tmax","tmax").withColumnRenamed("new_tmin","tmin")
weather_in_Fahrenheit.show(5)
原始数据样本:
+-----------+--------------------+---------+--------+---------+----+----+----+----+----------+
| station| name|elevation|latitude|longitude|prcp|snow|tmax|tmin| date|
+-----------+--------------------+---------+--------+---------+----+----+----+----+----------+
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 25| 11|2013-01-01|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 30| 10|2013-01-02|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 29| 18|2013-01-03|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 36| 13|2013-01-04|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336|0.03| 0.4| 39| 18|2013-01-05|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 36| 18|2013-01-06|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 41| 15|2013-01-07|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 44| 22|2013-01-08|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336| 0.0| 0.0| 50| 27|2013-01-09|
|USW00094846|CHICAGO OHARE INT...| 201.8| 41.995| -87.9336|0.63| 0.0| 45| 22|2013-01-10|
+-----------+--------------------+---------+--------+---------+----+----+----+----+----------+
将UDF应用于华氏:
+-----------+--------------------+--------+---------+---------+----------+-----+----+----+----+----+
| station| name|latitude|longitude|elevation| date| awnd|prcp|snow|tmax|tmin|
+-----------+--------------------+--------+---------+---------+----------+-----+----+----+----+----+
|USW00094846|CHICAGO OHARE INT...| 41.995| -87.9336| 201.8|2013-01-01| 8.5| 0.0| 0.0| 77| 51|
|USW00094846|CHICAGO OHARE INT...| 41.995| -87.9336| 201.8|2013-01-02| 8.05| 0.0| 0.0| 86| 50|
|USW00094846|CHICAGO OHARE INT...| 41.995| -87.9336| 201.8|2013-01-03|11.41| 0.0| 0.0| 84| 64|
|USW00094846|CHICAGO OHARE INT...| 41.995| -87.9336| 201.8|2013-01-04| 13.2| 0.0| 0.0| 96| 55|
|USW00094846|CHICAGO OHARE INT...| 41.995| -87.9336| 201.8|2013-01-05| 9.62|0.03| 0.4| 102| 64|
+-----------+--------------------+--------+---------+---------+----------+-----+----+----+----+----+