我已经有一个面部标志检测器,可以使用opencv和dlib保存图像,代码如下:
# import the necessary packages
from imutils import face_utils
import numpy as np
import argparse
import imutils
import dlib
import cv2
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True, help="Path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True, help="Path to input image")
args = vars(ap.parse_args())
# initialize dlib's face detector (HOG-based) and then create the facial landmark predictor
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
# load the input image, resize it, and convert it to grayscale
image = cv2.imread(args["image"])
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale image
rects = detector(gray, 1)
for (i, rect) in enumerate(rects):
# determine the facial landmarks for the face region, then
# convert the landmark (x, y)-coordinates to a NumPy array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# loop over the face parts individually
print(face_utils.FACIAL_LANDMARKS_IDXS.items())
for (name, (i, j)) in face_utils.FACIAL_LANDMARKS_IDXS.items():
print(" i = ", i, " j = ", j)
# clone the original image so we can draw on it, then
# display the name of the face part of the image
clone = image.copy()
cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# loop over the subset of facial landmarks, drawing the
# specific face part using a red dots
for (x, y) in shape[i:j]:
cv2.circle(clone, (x, y), 1, (0, 0, 255), -1)
# extract the ROI of the face region as a separate image
(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))
roi = image[y:y+h,x:x+w]
roi = imutils.resize(roi, width=250, inter=cv2.INTER_CUBIC)
# show the particular face part
cv2.imshow("ROI", roi)
cv2.imwrite(name + '.jpg', roi)
cv2.imshow("Image", clone)
cv2.waitKey(0)
# visualize all facial landmarks with a transparent overly
output = face_utils.visualize_facial_landmarks(image, shape)
cv2.waitKey(0)
我有阿诺德的脸,我使用opencv imwrite
保存了部分脸。
我想要达到的目的只是获得下颌的形象,而我并不想挽救颈部。见下图:
除了dlib
检测到的下巴外,是否有人知道如何移除其他部分。
答案 0 :(得分:8)
目前还不是很清楚你想要掩盖多少原始图像。假设您正在使用shape_predictor_68_face_landmarks.dat
,DLib的标记0到16定义了下颌线,因此您可以制作一个扩展这些下划线的遮罩来覆盖框架的下半部分。
请原谅我粗略的蟒蛇技能,但该代码将掩盖在下颚线下方,并将图像切割到感兴趣的区域以匹配您问题中的预期输出。
# import the necessary packages
from imutils import face_utils
import numpy as np
import imutils
import dlib
import cv2
import os
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
# load image
img = cv2.imread('thegovernator.png')
h, w, ch = img.shape
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# add an alpha channel to image
b,g,r = cv2.split(img);
a = np.ones((h,w,1), np.uint8) * 255
img = cv2.merge((b, g, r, a))
# detect face
rects = detector(gray,1)
roi = rects[0] # region of interest
shape = predictor(gray, roi)
shape = face_utils.shape_to_np(shape)
# extract jawline
jawline = shape[0:17]
top = min(jawline[:,1])
bottom = max(jawline[:,1])
# extend contour for masking
jawline = np.append(jawline, [ w-1, jawline[-1][1] ]).reshape(-1, 2)
jawline = np.append(jawline, [ w-1, h-1 ]).reshape(-1, 2)
jawline = np.append(jawline, [ 0, h-1 ]).reshape(-1, 2)
jawline = np.append(jawline, [ 0, jawline[0][1] ]).reshape(-1, 2)
contours = [ jawline ]
# generate mask
mask = np.ones((h,w,1), np.uint8) * 255 # times 255 to make mask 'showable'
cv2.drawContours(mask, contours, -1, 0, -1) # remove below jawline
# apply to image
result = cv2.bitwise_and(img, img, mask = mask)
result = result[top:bottom, roi.left():roi.left()+roi.width()] # crop ROI
cv2.imwrite('result.png', result);
cv2.imshow('masked image', result)