大家好我是Scala的新手,我有疑问:
以其他方式创建包含元素1和2的子列表,从不重复连续两个数字。
我的功能:
def functionAlternateElements(list : List[Int]): Option[List[Int]] = {
//What should be the solution?
}
测试:
test("AlternateElementsTests") {
assert(ca1.functionAlternateElements(List(1)) === Some(List(1)))
assert(ca1.functionAlternateElements(List(1,2)) === Some(List(2)))
assert(ca1.functionAlternateElements(List(1,2,3)) === Some(List(1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4)) === Some(List(1, 2, 1)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5)) === Some(List(2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6)) === Some(List(1, 2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7)) === Some(List(1, 2, 1, 2, 1)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8)) === Some(List(2, 1, 2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9)) === Some(List(1, 2, 1, 2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10)) === Some(List(1, 2, 1, 2, 1, 2, 1)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11)) === Some(List(2, 1, 2, 1, 2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12)) === Some(List(1, 2, 1, 2, 1, 2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13)) === Some(List(1, 2, 1, 2, 1, 2, 1, 2, 1)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14)) === Some(List(2, 1, 2, 1, 2, 1, 2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)) === Some(List(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)) === Some(List(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)))
assert(ca1.functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)) === Some(List(2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2)))
}
我该怎么做?
如果您知道代码可以给出解释,我可以理解吗?
答案 0 :(得分:1)
鉴于断言似乎或多或少是任意的,我不知道如何编写一个可以产生这些奇怪输出的程序。
但是,我知道如何编写一个可以编写程序的程序,它可以产生这些奇怪的输出。我们的想法是生成满足要求的代码。我们将通过提供ansatz然后通过蛮力搜索一堆魔法数字来生成它。
首先,让我们构建一些基础架构。我们需要一个微小的框架来通过暴力解决任意问题。这是一个对非常小的问题有用的特性:
trait BruteForce[X] {
def engageBruteForceAttack(constraint: X => Boolean): Option[X]
def zip[Y](other: BruteForce[Y]): BruteForce[(X, Y)] =
new ProductBruteForce[X, Y](this, other)
}
我们只需处理有限情况和笛卡尔积的情况:
class FiniteBruteForce[X](possibilities: List[X])
extends BruteForce[X] {
def engageBruteForceAttack(constraint: X => Boolean) = possibilities.find(constraint)
}
object FiniteBruteForce {
def apply[X](xs: X*) = new FiniteBruteForce[X](xs.toList)
}
class ProductBruteForce[A, B](a: BruteForce[A], b: BruteForce[B])
extends BruteForce[(A, B)] {
def engageBruteForceAttack(constraint: ((A, B)) => Boolean) = {
var solution: Option[(A, B)] = None
a.engageBruteForceAttack { x =>
b.engageBruteForceAttack { y =>
if (constraint((x, y))) {
solution = Some((x, y))
true
} else {
false
}
}.map(_ => true).getOrElse(false)
}
solution
}
}
现在我们可以从您的测试用例中提取输入和输出:
val mysteriousTestCases = List(
(List(1), List(1)),
(List(1,2), List(2)),
(List(1,2,3), List(1, 2)),
(List(1,2,3,4), List(1, 2, 1)),
(List(1,2,3,4,5), List(2, 1, 2)),
(List(1,2,3,4,5,6), List(1, 2, 1, 2)),
(List(1,2,3,4,5,6,7), List(1, 2, 1, 2, 1)),
(List(1,2,3,4,5,6,7,8), List(2, 1, 2, 1, 2)),
(List(1,2,3,4,5,6,7,8,9), List(1, 2, 1, 2, 1, 2)),
(List(1,2,3,4,5,6,7,8,9,10), List(1, 2, 1, 2, 1, 2, 1)),
(List(1,2,3,4,5,6,7,8,9,10,11), List(2, 1, 2, 1, 2, 1, 2)),
(List(1,2,3,4,5,6,7,8,9,10,11,12), List(1, 2, 1, 2, 1, 2, 1, 2)),
(List(1,2,3,4,5,6,7,8,9,10,11,12,13), List(1, 2, 1, 2, 1, 2, 1, 2, 1)),
(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14), List(2, 1, 2, 1, 2, 1, 2, 1, 2)),
(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), List(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)),
(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), List(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)),
(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17), List(2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2))
)
现在让我们编写一个程序,它将为我们编写计算奇怪的1,2,1,1,2,......序列的函数:
val (illuminatiPivot, (illuminatiOffset, illuminatiShift)) =
FiniteBruteForce(-1, -2, 0, 1, 2).zip(
FiniteBruteForce(-1, -2, 1, 2, 3).zip(
FiniteBruteForce(0, 1, 2)
)
).engageBruteForceAttack{ case (p, (o, s)) =>
mysteriousTestCases.forall { case (input, output) =>
val (start :: tail) = output
val n = input.size
val illuminatiNumber =
if (n < p) (n + o)
else List(1, 1, 2)((n + s) % 3)
start == illuminatiNumber
}
}.get
println(s"""|// The function that generates the start number
|// of the strange sequences
|def illuminatiNumber(n: Int): Int = {
| if (n < $illuminatiPivot) (n + $illuminatiOffset)
| else List(1, 1, 2)((n + $illuminatiShift) % 3)
|}
|""".stripMargin)
现在对输出的长度做同样的事情。这是ansatz:它应该是一些仿射线性函数,它以2/3因子增长并以奇怪的方式舍入:
val (hl3ConfirmedConst, hl3ConfirmedOffset) =
FiniteBruteForce(-2, -1, 0, 1, 2).zip(
FiniteBruteForce(-2, -1, 0, 1, 2, 3)
).engageBruteForceAttack{ case (c, o) =>
mysteriousTestCases.forall { case (input, output) =>
val n = input.size
val halfLife3Confirmed = c + (n * 2 + o) / 3
output.size == halfLife3Confirmed
}
}.get
println(s"""|def halfLife3Confirmed(i: Int): Int = {
| $hl3ConfirmedConst + (i * 2 + $hl3ConfirmedOffset) / 3
|}
|""".stripMargin)
最后,我没有费心思考如何将1
映射到序列1,2,1,2,...
和2
到2,1,2,1,...
,所以我也粗暴地强迫它:
val (tabulationOffset, tabulationShift) =
FiniteBruteForce(-1, 0, 1, 2).zip(FiniteBruteForce(0, 1)).engageBruteForceAttack{
case (x, y) =>
(0 to 2).map(i => x + (y + 1 + i) % 2).toList == List(1, 2, 1) &&
(0 to 2).map(i => x + (y + 2 + i) % 2).toList == List(2, 1, 2)
}.get
现在我们可以写出最初寻找的functionAlternateElements
- 方法:
println(s"""|def functionAlternateElements(list : List[Int]): Option[List[Int]] = {
| val n = list.size // throw away everything but the size
| val resultStart = illuminatiNumber(n)
| val resultSize = halfLife3Confirmed(n)
| Some(List.tabulate(resultSize){ i => $tabulationOffset + ($tabulationShift + resultStart + i) % 2 })
|}
|""".stripMargin)
让我们再次写出断言:
for ((i, o) <- mysteriousTestCases) {
val input = i.mkString("List(", ",", ")")
val output = o.mkString("List(", ",", ")")
println(s"""assert(functionAlternateElements($input) == Some($output))""")
}
而且让我们添加一条线告诉我们最终一切顺利:
println("""println("All assertions are true")""")
运行时,上述装置产生以下代码:
// The function that generates the start number
// of the strange sequences
def illuminatiNumber(n: Int): Int = {
if (n < -1) (n + -1)
else List(1, 1, 2)((n + 0) % 3)
}
def halfLife3Confirmed(i: Int): Int = {
0 + (i * 2 + 1) / 3
}
def functionAlternateElements(list : List[Int]): Option[List[Int]] = {
val n = list.size // throw away everything but the size
val resultStart = illuminatiNumber(n)
val resultSize = halfLife3Confirmed(n)
Some(List.tabulate(resultSize){ i => 1 + (1 + resultStart + i) % 2 })
}
assert(functionAlternateElements(List(1)) == Some(List(1)))
assert(functionAlternateElements(List(1,2)) == Some(List(2)))
assert(functionAlternateElements(List(1,2,3)) == Some(List(1,2)))
assert(functionAlternateElements(List(1,2,3,4)) == Some(List(1,2,1)))
assert(functionAlternateElements(List(1,2,3,4,5)) == Some(List(2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6)) == Some(List(1,2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7)) == Some(List(1,2,1,2,1)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8)) == Some(List(2,1,2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9)) == Some(List(1,2,1,2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10)) == Some(List(1,2,1,2,1,2,1)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11)) == Some(List(2,1,2,1,2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12)) == Some(List(1,2,1,2,1,2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13)) == Some(List(1,2,1,2,1,2,1,2,1)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14)) == Some(List(2,1,2,1,2,1,2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)) == Some(List(1,2,1,2,1,2,1,2,1,2)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)) == Some(List(1,2,1,2,1,2,1,2,1,2,1)))
assert(functionAlternateElements(List(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)) == Some(List(2,1,2,1,2,1,2,1,2,1,2)))
println("All assertions are true")
当我们执行生成的代码时,我们只得到:
All assertions are true
并且没有AssertionErrors。因此,我们成功地实现了奇怪的功能。
当天的提示:当你满足测试的唯一方法就是通过暴力破解大量的魔术数字时,你知道你的规范很糟糕。