我正在培训这种架构的手写识别模型:
{
"network": [
{
"layer_type": "l2_normalize"
},
{
"layer_type": "conv2d",
"num_filters": 16,
"kernel_size": 5,
"stride": 1,
"padding": "same"
},
{
"layer_type": "max_pool2d",
"pool_size": 2,
"stride": 2,
"padding": "same"
},
{
"layer_type": "l2_normalize"
},
{
"layer_type": "dropout",
"keep_prob": 0.5
},
{
"layer_type": "conv2d",
"num_filters": 32,
"kernel_size": 5,
"stride": 1,
"padding": "same"
},
{
"layer_type": "max_pool2d",
"pool_size": 2,
"stride": 2,
"padding": "same"
},
{
"layer_type": "l2_normalize"
},
{
"layer_type": "dropout",
"keep_prob": 0.5
},
{
"layer_type": "conv2d",
"num_filters": 64,
"kernel_size": 5,
"stride": 1,
"padding": "same"
},
{
"layer_type": "max_pool2d",
"pool_size": 2,
"stride": 2,
"padding": "same"
},
{
"layer_type": "l2_normalize"
},
{
"layer_type": "dropout",
"keep_prob": 0.5
},
{
"layer_type": "conv2d",
"num_filters": 128,
"kernel_size": 5,
"stride": 1,
"padding": "same"
},
{
"layer_type": "max_pool2d",
"pool_size": 2,
"stride": 2,
"padding": "same"
},
{
"layer_type": "l2_normalize"
},
{
"layer_type": "dropout",
"keep_prob": 0.5
},
{
"layer_type": "conv2d",
"num_filters": 256,
"kernel_size": 5,
"stride": 1,
"padding": "same"
},
{
"layer_type": "max_pool2d",
"pool_size": 2,
"stride": 2,
"padding": "same"
},
{
"layer_type": "l2_normalize"
},
{
"layer_type": "dropout",
"keep_prob": 0.5
},
{
"layer_type": "collapse_to_rnn_dims"
},
{
"layer_type": "birnn",
"num_hidden": 128,
"cell_type": "LSTM",
"activation": "tanh"
}
],
"output_layer": "ctc_decoder"
}
训练ctc损失在第一个训练时期突然下降,但高原在其余的时期波动。标签错误率不仅波动,而且似乎并没有降低。
我应该提到每个样本的序列长度非常接近最长地面实况的长度(即从1024进入ctc_loss时它变为32,接近最长的地面实况长度为21 )。
对于图像的预处理,我确保在调整大小时保持纵横比,并右键填充图像使其成为正方形,以便所有图像都具有宽度和手写的单词将在左侧。我还颠倒了图像的颜色,使得手写字符具有最高像素值(255)和背景,而其余部分具有最低像素值(0)。
预测是这样的。第一部分上随机的字符串然后在结尾处有一堆零(这可能是因为填充而预期的)。
INFO:tensorflow:outputs = [[59 45 59 45 59 55 59 55 59 45 59 55 59 55 59 55 45 59 8 59 55 45 55 8
45 8 45 59 45 8 59 8 45 59 45 8 45 19 55 45 55 45 55 59 45 59 45 8
45 8 45 55 8 45 8 45 59 45 55 59 55 59 8 55 59 8 45 8 45 8 59 8
59 45 59 45 59 45 59 45 59 45 59 45 19 45 55 45 22 45 55 45 55 8 45 8
59 45 59 45 59 45 59 55 8 45 59 45 59 45 59 45 19 45 59 45 19 59 55 24
4 52 54 55]]
这里是我如何将cnn输出折叠到dnn:
def collapse_to_rnn_dims(inputs):
batch_size, height, width, num_channels = inputs.get_shape().as_list()
if batch_size is None:
batch_size = -1
time_major_inputs = tf.transpose(inputs, (2, 0, 1, 3))
reshaped_time_major_inputs = tf.reshape(time_major_inputs,
[width, batch_size, height * num_channels]
)
batch_major_inputs = tf.transpose(reshaped_time_major_inputs, (1, 0, 2))
return batch_major_inputs
这就是我如何崩溃到ctc dims:
def convert_to_ctc_dims(inputs, num_classes, num_steps, num_outputs):
outputs = tf.reshape(inputs, [-1, num_outputs])
logits = slim.fully_connected(outputs, num_classes,
weights_initializer=slim.xavier_initializer())
logits = slim.fully_connected(logits, num_classes,
weights_initializer=slim.xavier_initializer())
logits = tf.reshape(logits, [num_steps, -1, num_classes])
return logits