我有以下数据,我正在尝试在3个股票代码中构建for loop
;
symbols <- c("HOG", "GE", "GOOG")
我有以下ggplot
。我想做两件事。
1)在ggplot
symbols
2)更改每个ggplot
的标题以包含正确的符号名称
使用下面的GOOG
的示例。
library(ggplot2)
ggplot(subset(NFO_WCAnalysis, Ticker %in% c("GOOG"))) +
geom_line(aes(Date, NFO, group = Ticker, colour = "Blue")) +
geom_line(aes(Date, WC, group = Ticker, colour = "Red")) +
labs(title="NFO and WC plot GOOG", x="Date", y="NFO / WC") +
scale_color_manual(labels = c("NFO", "WC"), values = c("Blue", "Red")) +
theme_bw() +
guides(color=guide_legend("Legend"))
数据。 (如果有必要,我可以在for loop
发布我的尝试)我也愿意使用基本情节功能而不是ggplot
。
structure(list(Ticker = c("GOOG", "GOOG", "GOOG", "GOOG", "GE",
"GE", "GE", "GE", "HOG", "HOG", "HOG", "HOG"), Date = c(2017,
2016, 2015, 2014, 2017, 2016, 2015, 2014, 2017, 2016, 2015, 2014
), REC = c(18705, 14232, 13909, 10849, 24438, 24076, 27022, 23237,
2435.65, 2361.37, 2300.99, 2164.26), INV = c(749, 268, 0, 0,
21923, 22354, 22515, 17689, 538.2, 499.92, 585.91, 448.87), OtherCurrentAssetsNotCash = c(80,
596, 628, 852, 0, 0, 0, 0, 223.37, 227.06, 323.59, 370.96), Payables = c(3137,
2041, 1931, 1715, 15153, 14435, 13680, 12067, 227.6, 235.32,
235.61, 196.87), SpontaneousFunsIncDeftaxes = c(21476, 14941,
14343, 13813, 19514, 18867, 17943, 14854, 529.82, 486.65, 471.97,
449.32), NFO = c(-5079, -1886, -1737, -3827, 11694, 13128, 17914,
14005, 2439.8, 2366.38, 2502.91, 2337.9), LTD = c(3969, 3935,
1995, 3228, 110555, 105497, 147742, 190999, 4587.26, 4666.98,
4832.47, 3761.53), EQ = c(152502, 139036, 120331, 103860, 64264,
75827, 98273, 128158, 1844.28, 1920.16, 1839.65, 2909.29), OtherLongTermLiabilities = c(16211,
7544, 5636, 4562, 144423, 119843, 165573, 238451, 382.97, 440.55,
553.55, 468), FA = c(72987, 62089, 57347, 50531, 377945, 365183,
493071, 654954, 6087.93, 6036.39, 5995.1, 5580.01), WC = c(99695,
88426, 70615, 61119, -58703, -64016, -81483, -97346, 726.58,
991.3, 1230.57, 1558.81), CreditPlusCashMinus = c(-104774, -90312,
-72352, -64946, 70397, 77144, 99397, 111351, 1713.22, 1375.08,
1272.34, 779.090000000001)), .Names = c("Ticker", "Date", "REC",
"INV", "OtherCurrentAssetsNotCash", "Payables", "SpontaneousFunsIncDeftaxes",
"NFO", "LTD", "EQ", "OtherLongTermLiabilities", "FA", "WC", "CreditPlusCashMinus"
), row.names = c(NA, -12L), class = "data.frame")
答案 0 :(得分:2)
我认为这里最好的方法是创建一个ggplot
个对象的列表,然后只替换你当前拥有的文本。
这就是我的意思:
#This will store all our ggplot objects, not necessary, but this gives us some extra flexibility
plotList <- list()
#This will loop through each of the symbol names
for(symbol in symbols){
#What you had before, but with minor changes
plotList[[symbol]] <- ggplot(subset(NFO_WCAnalysis, Ticker %in% symbol)) +
geom_line(aes(Date, NFO, group = Ticker, colour = "Blue")) +
geom_line(aes(Date, WC, group = Ticker, colour = "Red")) +
labs(title=paste0("NFO and WC plot ", symbol), x="Date", y="NFO / WC") +
scale_color_manual(labels = c("NFO", "WC"), values = c("Blue", "Red")) +
theme_bw() +
guides(color=guide_legend("Legend"))
}
请注意,绘图命令中的所有不同之处在于“GOOG”已被symbol
替换,paste0
是它循环的对象。在标题参数中,我刚刚使用plotList[[symbol]]
操作将符号名称与您想要的其他文本连接起来。
对象存储在plotList[["GOOG"]]
中,您现在可以使用plotList[[1]]
或任何您想要的符号名称来调用它们。)
因为它是一个列表,你也可以按顺序使用它,例如for(i in 1:3){
print(plotList[[i]])
}
。这意味着如果您以后想要也可以循环打印,或者只是抓住您想要的那些。
e.g。
plotList[[symbol]] <-
如果您只想在第一时间立即绘制内容,可以放弃ggplot
位并将print
命令中的所有{{1}}指令包装起来,这样就可以了同样的工作。
答案 1 :(得分:1)
只需要进行一些更改:
for(symbol in symbols)
print(ggplot(subset(NFO_WCAnalysis, Ticker %in% symbol)) +
geom_line(aes(Date, NFO, group = Ticker, colour = "Blue")) +
geom_line(aes(Date, WC, group = Ticker, colour = "Red")) +
labs(title= paste("NFO and WC plot", symbol), x = "Date", y = "NFO / WC") +
scale_color_manual(labels = c("NFO", "WC"), values = c("Blue", "Red")) +
theme_bw() +
guides(color = guide_legend("Legend")))
答案 2 :(得分:1)
我从编写一个函数开始。我也会从宽长格式转换数据,这对ggplot来说效果更好:
library(tidyverse)
plotSymbol <- function(data, symbol) {
data %>%
filter(Ticker == symbol) %>%
select(Date, NFO, WC) %>%
gather(variable,value, -Date) %>%
ggplot(aes(Date, value)) +
geom_line(aes(color = variable, group = variable)) +
labs(title = paste("NFO and WC plot", symbol),
y = "NFO, WC") +
scale_color_manual(values = c("blue", "red")) +
theme_bw()
}
现在您可以运行,例如:
plotSymbol(NFO_WCAnalysis, "GOOG")
而不是循环,您可以使用lapply
生成ggplot
个对象列表,每个符号一个:
plots <- lapply(symbols, function(x) plotSymbol(NFO_WCAnalysis, x))
现在,您可以使用列表plots
执行任何操作。例如,通过对代码进行一些修改,可以使用符号作为文件名的一部分写入PNG文件。