我是Hadoop的新手并编写了MapReduce作业,我遇到了一个问题,看起来reducers context.write方法正在将正确的值更改为不正确的值。
MapReduce作业应该做什么?
(int wordCount)
(int counter_dist)
(int counter_startZ)
(int counter_less4)
所有这一切都必须在一个MapReduce作业中完成。
正在分析的文本文件
Hello how zou zou zou zou how are you
正确输出:
wordCount = 9
counter_dist = 5
counter_startZ = 4
counter_less4 = 4
Mapper类
public class WordCountMapper extends Mapper <Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
String hasKey = itr.nextToken();
word.set(hasKey);
context.write(word, one);
}
}
}
减速机等级
为了调试我的代码,我打印了很多语句来检查我的值在每一点。 Stdout代码可在下面找到。
public class WordCountReducer extends Reducer <Text, IntWritable, Text, IntWritable> {
int wordCount = 0; // Total number of words
int counter_dist = 0; // Number of distinct words in the corpus
int counter_startZ = 0; // Number of words that start with letter Z
int counter_less4 = 0; // Number of words that appear less than 4
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int repeatedWords = 0;
System.out.println("###Reduce method starts");
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " (start)");
for (IntWritable val : values){
System.out.println("Key: " + key.toString());
repeatedWords++;
wordCount += val.get();
if(key.toString().startsWith("z") || key.toString().startsWith("Z")){
counter_startZ++;
}
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " (end of loop)");
}
counter_dist++;
if(repeatedWords < 4){
counter_less4++;
}
System.out.println("Values: wordCount:" + wordCount + " counter_dist:" + counter_dist + " counter_startZ:" + counter_startZ + " counter_less4:" + counter_less4 + " repeatedWords:" + repeatedWords + " (end)");
System.out.println("###Reduce method ends\n");
}
@Override
public void cleanup(Context context) throws IOException, InterruptedException{
System.out.println("###CLEANUP: wordCount: " + wordCount);
System.out.println("###CLEANUP: counter_dist: " + counter_dist);
System.out.println("###CLEANUP: counter_startZ: " + counter_startZ);
System.out.println("###CLEANUP: counter_less4: " + counter_less4);
context.write(new Text("Total words: "), new IntWritable(wordCount));
context.write(new Text("Distinct words: "), new IntWritable(counter_dist));
context.write(new Text("Starts with Z: "), new IntWritable(counter_startZ));
context.write(new Text("Appears less than 4 times:"), new IntWritable(counter_less4));
}
}
标准日志,我用于调试
###Reduce method starts
Values: wordCount:0 counter_dist:0 counter_startZ:0 counter_less4:0 (start)
Key: Hello
Values: wordCount:1 counter_dist:0 counter_startZ:0 counter_less4:0 (end of loop)
Values: wordCount:1 counter_dist:1 counter_startZ:0 counter_less4:1 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:1 counter_dist:1 counter_startZ:0 counter_less4:1 (start)
Key: are
Values: wordCount:2 counter_dist:1 counter_startZ:0 counter_less4:1 (end of loop)
Values: wordCount:2 counter_dist:2 counter_startZ:0 counter_less4:2 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:2 counter_dist:2 counter_startZ:0 counter_less4:2 (start)
Key: how
Values: wordCount:3 counter_dist:2 counter_startZ:0 counter_less4:2 (end of loop)
Key: how
Values: wordCount:4 counter_dist:2 counter_startZ:0 counter_less4:2 (end of loop)
Values: wordCount:4 counter_dist:3 counter_startZ:0 counter_less4:3 repeatedWords:2 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:4 counter_dist:3 counter_startZ:0 counter_less4:3 (start)
Key: you
Values: wordCount:5 counter_dist:3 counter_startZ:0 counter_less4:3 (end of loop)
Values: wordCount:5 counter_dist:4 counter_startZ:0 counter_less4:4 repeatedWords:1 (end)
###Reduce method ends
###Reduce method starts
Values: wordCount:5 counter_dist:4 counter_startZ:0 counter_less4:4 (start)
Key: zou
Values: wordCount:6 counter_dist:4 counter_startZ:1 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:7 counter_dist:4 counter_startZ:2 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:8 counter_dist:4 counter_startZ:3 counter_less4:4 (end of loop)
Key: zou
Values: wordCount:9 counter_dist:4 counter_startZ:4 counter_less4:4 (end of loop)
Values: wordCount:9 counter_dist:5 counter_startZ:4 counter_less4:4 repeatedWords:4 (end)
###Reduce method ends
###CLEANUP: wordCount: 9
###CLEANUP: counter_dist: 5
###CLEANUP: counter_startZ: 4
###CLEANUP: counter_less4: 4
从日志中可以看出所有值都是正确的,并且一切正常。但是,当我在HDFS中打开输出目录并读取&#34; part-r-00000&#34;文件,写在那里的context.write的输出完全不同。
Total words: 22
Distinct words: 4
Starts with Z: 0
Appears less than 4 times: 4
答案 0 :(得分:1)
您绝不能依赖cleanup()
方法来处理关键程序逻辑。每次JVM被扯掉时都会调用cleanup()
方法。因此,基于生成和杀死的JVM(无法预测)的数量,您的逻辑会变得不稳定。
移动initialization
并将上下文写入reduce方法。
即
int wordCount = 0; // Total number of words
int counter_dist = 0; // Number of distinct words in the corpus
int counter_startZ = 0; // Number of words that start with letter Z
int counter_less4 = 0; // Number of words that appear less than 4
和
context.write(new Text("Total words: "), new IntWritable(wordCount));
context.write(new Text("Distinct words: "), new IntWritable(counter_dist));
context.write(new Text("Starts with Z: "), new IntWritable(counter_startZ));
context.write(new Text("Appears less than 4 times:"), new IntWritable(counter_less4));
编辑:基于OP评论,似乎整个逻辑存在缺陷。
以下是完成所需结果的代码。 请注意,我尚未实施setup()
或cleanup()
;因为根本不需要。
使用计数器计算您要查找的内容。 MapReduce完成后,只需获取驱动程序类中的计数器。
e.g。 单词数量和单词以&#34; z&#34;开头或者&#34; Z&#34; 可以在映射器中计算
public class WordCountMapper extends Mapper <Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
String hasKey = itr.nextToken();
word.set(hasKey);
context.getCounter("my_counters", "TOTAL_WORDS").increment(1);
if(hasKey.toUpperCase().startsWith("Z")){
context.getCounter("my_counters", "Z_WORDS").increment(1);
}
context.write(word, one);
}
}
}
可以在reducer计数器中计算不同字数和words appearing less than 4 times
。
public class WordCountReducer extends Reducer <Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int wordCount= 0;
context.getCounter("my_counters", "DISTINCT_WORDS").increment(1);
for (IntWritable val : values){
wordCount += val.get();
}
if(wordCount < 4{
context.getCounter("my_counters", "WORDS_LESS_THAN_4").increment(1);
}
}
}
在Driver类中获取计数器。以下代码位于您提交作业的行
之后CounterGroup group = job.getCounters().getGroup("my_counters");
for (Counter counter : group) {
System.out.println(counter.getName() + "=" + counter.getValue());
}