我想更改Tensorflow中使用的AdadeltaOptimizer
之类的最小化优化器。
我获得了许可证,但lib中没有代码,只有参考,所以如何找到实现?这是API的Adadelta示例:
@tf_export("train.AdadeltaOptimizer") class
AdadeltaOptimizer(optimizer.Optimizer)
Optimizer that implements the Adadelta algorithm.
See [M. D. Zeiler](http://arxiv.org/abs/1212.5701) ([pdf]
(http://arxiv.org/pdf/1212.5701v1.pdf))
答案 0 :(得分:1)
第一个入口点是tensorflow主回购的python/training/adadelta.py
。但是您可能会注意到它是一个python包装器,所有操作实际上都是用本机C ++实现的并且在python中加载(这是tensorflow中的常用做法,例如参见这个问题:Where is the code for gradient descent?)。
例如,在core/kernels/training_ops.cc
中,您可以找到ApplyAdadelta
op的CPU impelmentation。同一操作的GPU实现在core/kernels/training_ops_gpu.cu.cc
:
template <typename T>
struct ApplyAdadelta<GPUDevice, T> {
void operator()(const GPUDevice& d, typename TTypes<T>::Flat var,
typename TTypes<T>::Flat accum,
typename TTypes<T>::Flat accum_update,
typename TTypes<T>::ConstScalar lr,
typename TTypes<T>::ConstScalar rho,
typename TTypes<T>::ConstScalar epsilon,
typename TTypes<T>::ConstFlat grad) {
Eigen::array<typename TTypes<T>::Tensor::Index, 1> bcast;
bcast[0] = grad.dimension(0);
Eigen::Sizes<1> single;
accum.device(d) = accum * rho.reshape(single).broadcast(bcast) +
grad.square() * (grad.constant(T(1)) -
rho.reshape(single).broadcast(bcast));
const auto update =
(accum_update + epsilon.reshape(single).broadcast(bcast)).sqrt() *
(accum + epsilon.reshape(single).broadcast(bcast)).rsqrt() * grad;
var.device(d) -= update * lr.reshape(single).broadcast(bcast);
accum_update.device(d) =
accum_update * rho.reshape(single).broadcast(bcast) +
update.square() *
(grad.constant(T(1)) - rho.reshape(single).broadcast(bcast));
}
};
如果您要修补C ++代码,则必须重建.so
库。为了能够在CPU和GPU上运行新的优化器,您必须触摸并重建它们。