通过Dash创建图表时Pandas'关键'错误

时间:2018-03-06 06:23:38

标签: python plotly-dash

我正在尝试在要求维度级别向下钻取之后在两个指标之间创建散点图。但是,我收到错误:KeyError:u'brand'(列名之一)。我是新的Dash并且无法调试错误,因为列名没有任何问题。以下是代码:

import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
import sqlalchemy as sq
import numpy as np
from datetime import datetime

engine_prd = sq.create_engine(“connection url”)

df=pd.read_sql(“SELECT t1.date,
t1.article_type as article_type,
t1.product_gender as product_gender,
t1.brand as brand,
t1.master_category as master_category,
t1.business_unit as business_unit,
SUM(t1.revenue) as revenue,
SUM(t1.sold_quantity) as units_sold,
SUM(t1.total_discount) / NULLIF( SUM(t1.total_mrp),0) AS discount_perc,
SUM(t1.approved_po_quantity) - SUM(t1.po_inwarded_quantity) AS pending_invard_quantity,
SUM(t1.revenue) / NULLIF(SUM(t1.list_count), 0) AS rpi,
SUM(t1.list_count),
100 *ratio_to_report(SUM(t1.list_count)) OVER (PARTITION BY t1.DATE) AS lc_share
FROM fact_category_over_view_metrics t1 
WHERE t1.DATE> 20180101 and is_live_style=1
GROUP BY 
t1.DATE,t1.article_type,t1.product_gender,t1.brand,t1.master_category,
t1.business_unit;”,engine_prd)

df[[‘date_format’]] = df[[‘date’]].applymap(str).applymap(lambda s: “{}/{}/{}”.format(s[4:6],s[6:], s[0:4]))
df[[‘year_month’]]=df[[‘date’]].applymap(str).applymap(lambda s: “{}-{}”.format(s[0:4],s[4:6]))
df[‘year_month’]=df[‘year_month’].astype(str)

year_month=df[‘year_month’].unique()

available_indicators = np.array([‘revenue’,‘units_sold’,‘discount_perc’,‘pending_invard_quantity’,‘rpi’,‘lc_share’])
dimension_level=np.array([‘brand’,‘product_gender’,‘article_type’,‘master_category’,‘business_unit’])
#available_indicators=list(df)

app=dash.Dash()

app.layout = html.Div([
html.Div([

   html.Div([
          dcc.Dropdown(
                 id='dimension-level',
                 options=[{'label': i, 'value': i} for i in dimension_level],
                 value='brand'
          )]),

   html.Div([
        dcc.Dropdown(
            id='crossfilter-xaxis-column',
            options=[{'label': i, 'value': i} for i in available_indicators],
            value='revenue'
        ),
        dcc.RadioItems(
            id='crossfilter-xaxis-type',
            options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
            value='Linear',
            labelStyle={'display': 'inline-block'}
        )
    ],
    style={'width': '48%', 'display': 'inline-block'}),

    html.Div([
        dcc.Dropdown(
            id='crossfilter-yaxis-column',
            options=[{'label': i, 'value': i} for i in available_indicators],
            value='units_sold'
        ),
        dcc.RadioItems(
            id='crossfilter-yaxis-type',
            options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
            value='Linear',
            labelStyle={'display': 'inline-block'}
        )
    ], style={'width': '48%', 'float': 'right', 'display': 'inline-block'})
]),


   dcc.Graph(
          id='crossfilter-indicator-scatter'),

   dcc.Slider(
   id='crossfilter-year-month--slider',
   min=0,
   max=len(df['year_month'].unique()),
   value=0,
   step=None,
   marks={i : str(yearm) for i, yearm in enumerate(df['year_month'].unique())} # enumerate the dates
   )
])

@app.callback(
dash.dependencies.Output(‘crossfilter-indicator-scatter’, ‘figure’),
[dash.dependencies.Input(‘dimension-level’, ‘value’),
dash.dependencies.Input(‘crossfilter-xaxis-column’, ‘value’),
dash.dependencies.Input(‘crossfilter-yaxis-column’, ‘value’),
dash.dependencies.Input(‘crossfilter-xaxis-type’, ‘value’),
dash.dependencies.Input(‘crossfilter-yaxis-type’, ‘value’),
dash.dependencies.Input(‘crossfilter-year-month–slider’, ‘value’)],
[dash.dependencies.State(‘crossfilter-year-month–slider’, ‘marks’)])

def update_graph(dimension_level_name,xaxis_column_name, yaxis_column_name,xaxis_type, yaxis_type, selected_year_month_key,marks):

   selected_year_month=marks[str(selected_year_month_key)]
   df_filtered = df[df['year_month'] == selected_year_month]
   dff=df_filtered.groupby([dimension_level_name]).sum()


   return {
    'data': [go.Scatter(
        x=dff[xaxis_column_name],
        y=dff[yaxis_column_name],
        text=dff[dimension_level_name],
        #customdata=dff['article_type'],
        mode='markers',
        marker={
            'size': 15,
            'opacity': 0.5,
            'line': {'width': 0.5, 'color': 'white'}
        }
    )],
    'layout': go.Layout(
        xaxis={
            'title': xaxis_column_name,
            'type': 'linear' if xaxis_type == 'Linear' else 'log'
        },
        yaxis={
            'title': yaxis_column_name,
            'type': 'linear' if yaxis_type == 'Linear' else 'log'
        },
        margin={'l': 40, 'b': 30, 't': 10, 'r': 0},
        height=450,
        hovermode='closest'
    )
}

如果name =='main': app.run_server()

使用下拉列表中的输入值按df分组时发生错误。数据框的头部外观已链接到The sample data

1 个答案:

答案 0 :(得分:0)

键错误发生在" text = dff [dimension_level_name]"中。这是因为在按数据帧分组时,as_index未设置为False。这将引发一个关键错误。通过将dff = df_filtered.groupby([dimension_level_name])替换为sum()来解决问题: DFF = df_filtered.groupby([dimension_level_name] .as_index =假)的.sum()