我正在努力将<script>
$(document).ready(function() {
$("input[name$='src']").click(function() {
var test = $(this).val();
$("div.desc").hide();
$("#src" + test).show();
});
});
</script>
<Input type = 'Radio' Name ='src' value= 'sr'>SR<p>
<Input type = 'Radio' Name ='src' value= 'C'>C
<p><p>
<div id="st" class="desc">
SR:
<select name="sp" id="SR" visible="false">
<option selected="selected">All</option>
<?php
foreach ($qry2 as $SR) {
?>
<option value="<?= $SR->SR ?>"><?= $SR->SR ?></option>
<?php };
?>
</select>
</div>
<div id="c" class="desc" visible="false">
C:
<select name="C" id="C">
<option selected="selected">All</option>
<?php
foreach ($qry1 as $name) {
?>
<option value="<?= $name->C ?>"><?= $name->C ?></option>
<?php };
?>
</select>
</div>
结果收集到数据框中。这继续示例here
使用gamlss
lm
使用library(tidyverse)
library(broom)
library(gamlss)
library(datasets)
# working
mro <- mtcars %>%
nest(-am) %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual")),
fit = map(data, ~lm(mpg ~ hp + wt + disp, data = .)),
results = map(fit, augment))
gamlss
感谢任何提示或提示。
答案 0 :(得分:0)
到目前为止,这是我发现的最优雅的方法(反复试验)。很高兴能够得到纠正。
aug_func <- function(df){
augment(gamlss(mpg ~ hp + wt + disp, data=df))
}
mtcars %>%
mutate(am = factor(am, levels = c(0, 1), labels = c("automatic", "manual"))) %>%
group_by(am) %>%
do(aug_func(df=.)) %>%
ggplot(aes(x = mpg, y = .fitted)) +
geom_abline(intercept = 0, slope = 1, alpha = .2) + # Line of perfect fit
geom_point() +
facet_grid(am ~ .) +
labs(x = "Miles Per Gallon", y = "Predicted Value") +
theme_bw()