我正在尝试训练frcnn_resnet101_kitti检测一些食物马铃薯和鸡块。总数据大约为1200张图像,每张图像包含至少10张图片,每张图片共生产12000块鸡肉和土豆。 样本图像
从真实环境中标记图像以及单独的各个项目。训练为110k步,平均速率为0.14-0.4
pipeline.config
model {
faster_rcnn {
num_classes: 4
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1987
}
}
feature_extractor {
type: "faster_rcnn_resnet101"
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 16
width_stride: 16
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.00999999977648
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.699999988079
first_stage_max_proposals: 100
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
use_dropout: false
dropout_keep_probability: 1.0
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config {
batch_size: 1
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
manual_step_learning_rate {
initial_learning_rate: 9.99999974738e-05
schedule {
step: 0
learning_rate: 9.99999974738e-05
}
schedule {
step: 500000
learning_rate: 9.99999974738e-06
}
schedule {
step: 700000
learning_rate: 9.99999997475e-07
}
}
}
momentum_optimizer_value: 0.899999976158
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "home/kitti/model.ckpt"
from_detection_checkpoint: true
num_steps: 800000
}
train_input_reader {
label_map_path: "home/kitti/kitti_label_map.pbtxt"
tf_record_input_reader {
input_path: "home/kitti/kitti_train.tfrecord"
}
}
eval_config {
num_examples: 500
metrics_set: "coco_metrics"
use_moving_averages: false
}
eval_input_reader {
label_map_path: "home/kitti/kitti_label_map.pbtxt"
tf_record_input_reader {
input_path: "home/kitti/kitti_val.tfrecord"
}
}